Ежидзе
1.52K subscribers
15 photos
153 links
Олимпиадная математика с юмором!

Авторы канала:
Петров Сергей - @Chuckchaness
Жуковский Никита - @tavukchorbasi

Чат канала - @ezhidze_chat
Присылайте нам свои задачи - @ezhidze_problems_bot
Download Telegram
219. В клетки таблицы размером 9×9 расставили все натуральные числа от 1 до 81. Вычислили произведения чисел в каждой строке таблицы и получили набор из девяти чисел. Затем вычислили произведения чисел в каждом столбце таблицы и также получили набор из девяти чисел. Могли ли полученные наборы оказаться одинаковыми?

#олмат
#9класс
245. На полях шахматной доски расставлены целые числа, причем никакое число не встречается дважды. Докажите, что есть пара соседних (по стороне) клеток, числа в которых отличаются не меньше, чем на 5.

#олмат
#9класс
253. Перед входом в библиотеку стоят две доски. При входе в библиотеку человек считает сколько народу внутри и пишет на первой доске число. При выходе человек тоже считает сколько народу внутри и пишет число на второй доске. Докажите, что к закрытию библиотеки множества чисел на досках будут совпадать.

#олмат
#9класс
257. Назовём лабиринтом шахматную доску 8×8, на которой между некоторыми полями поставлены перегородки. По команде ВПРАВО ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на месте; аналогично выполняются команды ВЛЕВО, ВВЕРХ и ВНИЗ. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдет все доступные поля в лабиринте при любом выборе пользователя?

#олмат
#информатика
#9класс
259. Можно ли расставить в квадрате 3×3 различные числа Фибоначчи, чтобы он стал магическим? (Магический квадрат - это квадрат, в котором суммы чисел во всех столбцах, строках и на двух главных диагоналях равны)

#олмат
#9класс
#тч
273. На доске выписаны числа 1,2,...,20. Разрешается стереть любые два числа a и b и заменить их на число ab+a+b. Какое число может остаться на доске после 19 таких операций?

#олмат
#9класс
286. На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого были ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?

#олмат
#всерос
#9класс
347. Есть 20 гирек, каждая из которых весит целое число грамм. Известно, что если убрать произвольное число (возможно ноль) каких-то гирек, то оставшиеся нельзя разделить на две кучки с одинаковым весом. Докажите, что суммарный вес всех гирек не меньше 1 тонны.

#олмат
#9класс
​​349. Две карты Москвы разного масштаба наложены друг на друга так, что меньшая карта лежит целиком на большей (север у них в одном направлении). Докажите, что их можно проткнуть булавкой так, чтобы на обоих картах была проколота одна и та же точка Москвы.

#олмат
#9класс
​​354. У Тайлера Джозефа есть три палочки. Если из них нельзя сложить треугольник, то Тайлер укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль, и треугольник снова нельзя сложить, то Тайлер повторяет операцию. Может ли этот процесс продолжаться бесконечно?

#олмат
#9класс