52. Олег и Сергей по очереди выписывают слева направо по одной цифре, пока не получится девятизначное число. При этом нельзя выписывать цифры, которые уже выписаны. Начинает (и заканчивает) Олег. Олег побеждает, если полученное число кратно 4, в противном случае побеждает Сергей. Кто победит при правильной игре?
#олмат
#8класс
#матигры
#олмат
#8класс
#матигры
62. Белая ладья стоит на поле b2, черная на поле c4 .Игроки ходят по очереди,начинают белые. Ладье запрещается становиться под бой другой ладьи, а также становиться на ранее пройденное поле (любой из ладей). Тот, кто не может сделать очередной ход, проигрывает.Кто должен выиграть при правильной игре?
#олмат
#9класс
#матигры
#олмат
#9класс
#матигры
250. Двое играют на шахматной доске 8×8. Первый -- ставит на любую клетку пешку. Далее они по очереди ее двигают на любую соседнюю клетку по вертикали или горизонтали, причем нельзя ставить пешку на поле, где она уже побывала. Проигрывает тот, кому некуда ходить. Кто выиграет при правильной игре -- первый или второй?
#олмат
#матигры
#олмат
#матигры
267. Сто карточек в стопке пронумерованы числами от 1 до 100 сверху вниз. Двое играющих по очереди снимают сверху по одной или несколько карточек и отдают противнику. Выигрывает тот, у кого первого произведение всех чисел на карточках станет кратно 1000000. Может ли кто-то из игроков всегда выигрывать независимо от игры противника?
#олмат
#матигры
#олмат
#матигры
284. На бесконечной плоскости расположены фишка-волк и 2000 фишек-овец. Двое ходят по очереди: один игрок передвигает волка, а другой одну из овец. И волк, и овцы передвигаются за один ход в любую сторону не более чем на один метр. Верно ли, что при любой первоначальной позиции, волк поймает хотя бы одну овцу?
#олмат
#матигры
#олмат
#матигры
312. Четверо пиратов: капитан, старшина, матрос и юнга (звания идут в порядке убывания значимости) нашли клад со 100 золотыми монетами. Им нужно разделить эти 100 монет между собой. Этот процесс происходит следующим образом: сначала капитан выбирает, как нужно разделить монеты среди четверых моряков (каждому достается целое число монет) и происходит голосование в котором участвуют все. Если большинство голосов против такого разделения, то капитана убивают, иначе, пираты получают соответствующее количество монет. Если капитана убили, то свой вариант предлагает старшина и опять происходит голосование. Так происходит и далее. Какое наибольшее количество монет может гарантировать себе капитан, если все пираты действуют наиболее оптимальным образом? Дополнительное условие: если невозможно увеличить собственную выгоду, то пират действует так, чтобы поддержать моряка меньшей значимости. Например: при всех прочих равных, юнга будет действовать в интересах матроса, а не старшины.
#олмат
#матигры
#олмат
#матигры
438. Двое игроков отмечают точки плоскости. Сначала первый отмечает точку красным цветом, затем второй отмечает 100 точек синим, затем первый снова одну точку красным, второй 100 точек синим и так далее. (Перекрашивать уже отмеченные точки нельзя.) Докажите, что первый может построить правильный треугольник с красными вершинами.
#олмат
#матигры
#олмат
#матигры
443. Имеются фишки с цифрами 1, 2, 3, 4, 5, 6, 7, 8, 9. Рома и Даля по очереди берут фишки (каждый ход по одной фишке). Выигрывает тот игрок, который первым соберёт у себя три фишки с суммой 15. (Если ни у одного игрока таких фишек не будет, фиксируется ничья.) Начинает Даля. Может ли один из игроков обеспечить себе победу? Ничью?
#олмат
#матигры
#олмат
#матигры