Epython Lab
6.77K subscribers
633 photos
30 videos
103 files
1.16K links
Welcome to Epython Lab, where you can get resources to learn, one-on-one trainings on machine learning, business analytics, and Python, and solutions for business problems.

Buy ads: https://telega.io/c/epythonlab
Download Telegram
Forwarded from Epython Lab (Asibeh Tenager)
We learn how to analysis data in future data science. You stay at home and learn new futures of Data Science.

Think this is an opportunity to be future Data Scientist.

I share you my knowledge and experience.

#QuarantineYourself #Bioinformatics #DataAnalysis #DataScience
👍3
Forwarded from Future Data Science(FDS)
4
Forwarded from Epython Lab
As a data scientist 70-80 percent of your time spending on data cleansing. If you have given data which contains special characters and you may need to avoid those special characters, what methods do you use to avoid it?
https://youtu.be/qL7lX5lCfgw
👍3
Day 1: Introduction to the Challenge
📢 Day 1/100: The Journey Begins!
I'm embarking on a 100-day challenge to share insights, progress, and lessons learned as I build a data-driven credit scoring model tailored for Buy-Now-Pay-Later (BNPL) services in Ethiopia's fintech space. 🚀

Why this topic? BNPL is reshaping financial inclusion, and robust credit scoring is the backbone of sustainable lending. Follow along as I explore data, algorithms, and strategies to make this happen!

hashtag#Fintech hashtag#DataScience hashtag#CreditScoring hashtag#BNPL hashtag#FinancialInclusion hashtag#Ethiopia hashtag#100DaysChallenge
3👍3
📢Day 9/100: Feature Engineering Deep Dive
Feature engineering is where raw data turns into actionable insights! 🛠
In my credit scoring project, key features include:
1️⃣ Recency, Frequency, Monetary (RFM): Critical for understanding customer behavior.
2️⃣ Fraud indicators: High-value transactions flagged based on outlier analysis.
3️⃣ Categorical encodings: Using Weight of Evidence (WoE) to transform qualitative data like product categories.
💡 Takeaway: Good features are the foundation of any successful model. They ensure the patterns we observe are meaningful and actionable.
💡 Discussion point: What’s your go-to method for handling highly skewed data in financial datasets?
#FeatureEngineering #DataScience #CreditScoring #FintechEthiopia
👍3
📢Day 17/100: From Data to Insights



My journey started with collecting and cleaning data from Telegram channels, a hub for Ethiopian e-commerce.



Key steps:

1️⃣ Scraping Telegram messages to capture product details.

2️⃣ Preprocessing Amharic text to handle non-text characters and normalize content.

3️⃣ Tokenizing text for labeling.



💡 Takeaway: High-quality data preparation is the backbone of effective machine learning models.


#DataScience #AmharicNLP #FintechEthiopia
Why You Should Use Virtual Environments & Structure ML Projects Professionally 🚀
When working on machine learning projects, managing dependencies and maintaining a clean, scalable structure is crucial. Without proper organization, projects quickly become messy, unmanageable, and prone to conflicts.

🔹 Why Use Virtual Environments?
A virtual environment (venv) allows you to:
Isolate dependencies for different projects. No more version conflicts!
Ensure reproducibility—your project runs the same anywhere.
Avoid system-wide installations that could break other Python applications.

How? https://youtu.be/qYYYgS-ou7Q

🔹 Why Structure ML Projects Properly?
A professional project structure helps with:
Scalability—separate concerns (data, API, models, notebooks)
Collaboration—team members can understand and contribute easily
Automation—CI/CD for deployment and model updates

Typical ML Project Structure: https://youtu.be/qYYYgS-ou7Q

🔹 Why Use Git, GitHub, and CI/CD?
Git & GitHub for version control & collaboration
CI/CD (e.g., GitHub Actions) for automating testing & deployments
Reproducibility & rollback—track and revert changes easily

💡 Pro Tip: Always maintain a README.md to document setup & usage instructions!

What challenges have you faced in structuring ML projects? Drop your thoughts below! 👇

#Python #MachineLearning #MLProject #GitHub #VirtualEnvironments #DataScience #CI_CD #SoftwareEngineering
👍4
Master the Math Behind Machine Learning

Whether you're just starting or looking to strengthen your foundation, here's a curated roadmap covering key mathematical concepts every ML practitioner should know. Dive into Linear Algebra, Probability Distributions, and Linear Regression with focused resources.

Join the learning journey and connect with like-minded learners in our Telegram group https://t.me/epythonlab

🔗 Linear Regression: https://bit.ly/46rqiBu
🔗 Linear Algebra: https://bit.ly/45EpfwB
🔗 Probability Distribution: https://bit.ly/495L8b5
🔗 Telegram Group: https://bit.ly/3IR1lnm

#MachineLearning #MathForML #DataScience #AI #LearningPath #LinearAlgebra #Probability #MLRoadmap
2
🚨 Fraud Isn’t Just a Risk—It’s a Reality. Here’s How We’re Fighting Back with ML in Fintech. 💡https://youtu.be/kQHpXSH4G_E

In the fast-moving world of fintech, trust is currency. And nothing erodes trust faster than fraud.

Recently, I took a deep dive into building a fraud detection engine using classification algorithms in Python—but not just with the traditional plug-and-play mindset.

Instead of asking “Which model performs best?”, I asked: 🔍 How can we build a system that understands fraud like a human analyst would—but at scale and in real time?

📊 Here's the approach:

1. Behavioral Pattern Recognition: Mapped transaction flows to user behavior signatures, not just features. Outliers aren’t always fraud—but often they are.


2. Hybrid Classification Stack: Instead of relying on one algorithm (e.g., Random Forest or Logistic Regression), I built a layered model that integrates explainable models with high-performance black-box learners.


3. Anomaly-Aware Sampling: Balanced class imbalance with strategic undersampling, but retained edge-case patterns using synthetic minority over-sampling (SMOTE with domain tweaks).


4. Real-World Feedback Loop: Built an active learning system that retrains from confirmed fraud cases—turning human analysts into model trainers.



🧠 The result? A system that doesn’t just flag suspicious activity—but learns from every incident.

🎯 Tools used:

Python, Scikit-learn, XGBoost

Pandas, Seaborn (for EDA)

SHAP (for interpretability)

Flask + Streamlit for dashboarding


💬 Fintech peers: How are you balancing accuracy vs explainability in fraud detection models?

Let’s connect if you’re working on ML in fintech—especially in risk, fraud, or anomaly detection. Happy to exchange ideas and build smarter, safer systems together. 🔐📈

#Fintech #MachineLearning #FraudDetection #Python #AI #Classification #DataScience #XAI #MLinFinance #CyberSecurity
💰 Machine Learning is Reshaping Fintech — and we're just getting started.
FinTech ML Labs: https://www.youtube.com/playlist?list=PL0nX4ZoMtjYFuTnUcwv0aFnxN9pEyjVez

Two of the most mission-critical areas where ML is making a real-world impact today are:

1. 🔎 Credit Scoring

Traditional credit scoring often overlooks those without a deep financial history. With ML:

We analyze alternative data (e.g., transaction patterns, mobile usage, utility payments)

Apply classification algorithms to predict creditworthiness

Enable inclusive lending for underbanked populations


Outcome: More accurate risk assessment + financial inclusion.


---

2. 🛡️ Fraud Detection

Fraudsters evolve fast. ML evolves faster.

We train models on millions of transactions, identifying subtle anomalies

Use a mix of real-time classification, unsupervised anomaly detection, and behavioral modeling

Continuously improve through feedback loops and active learning


🚨 ML helps flag suspicious activity before it turns into loss.


---

🔧 Tech Stack: Python | Scikit-learn | XGBoost | SHAP | FastAPI | Streamlit | AWS

🔄 The future of fintech is predictive, not reactive.

If you’re building intelligent financial systems—whether it’s for lending, fraud prevention, or personalization—let’s connect and exchange notes. 🚀

#Fintech #MachineLearning #CreditScoring #FraudDetection #ArtificialIntelligence #DataScience #FinancialInclusion #ResponsibleAI #Python #MLinFinance
🚀 Train Loan Prediction Models with Synthetic Data using CTGAN
📊 | #FinTech #MachineLearning #DataScience #SyntheticData #CTGAN

In real-world financial environments, access to high-quality, privacy-compliant loan data can be extremely limited due to regulatory and ethical constraints.

That’s why in my latest FinTech ML project, I explore how to train accurate loan prediction models using synthetic datasets generated by CTGAN (Conditional Tabular GAN).

💡 Why this matters:

Maintain data privacy without sacrificing model realism

Generate diverse borrower profiles and edge cases

Build ML-ready datasets with class balance and feature richness

🔍 What’s covered:

Simulate loan application data (income, credit score, loan amount, status, etc.)

Generate synthetic records using CTGAN from SDV

Train and evaluate classification models (XGBoost, RandomForest)

Compare real vs synthetic model performance

🛠 Tools: Python, Pandas, CTGAN, Scikit-learn, Matplotlib


Let’s advance ethical AI in finance—one synthetic sample at a time.
💬 Curious to try synthetic data in your projects? Drop your thoughts or questions below!
https://youtu.be/cqGLJsOpNPU
👍5
Forwarded from Epython Lab
💰 Machine Learning is Reshaping Fintech — and we're just getting started.
FinTech ML Labs: https://www.youtube.com/playlist?list=PL0nX4ZoMtjYFuTnUcwv0aFnxN9pEyjVez

Two of the most mission-critical areas where ML is making a real-world impact today are:

1. 🔎 Credit Scoring

Traditional credit scoring often overlooks those without a deep financial history. With ML:

We analyze alternative data (e.g., transaction patterns, mobile usage, utility payments)

Apply classification algorithms to predict creditworthiness

Enable inclusive lending for underbanked populations


Outcome: More accurate risk assessment + financial inclusion.


---

2. 🛡️ Fraud Detection

Fraudsters evolve fast. ML evolves faster.

We train models on millions of transactions, identifying subtle anomalies

Use a mix of real-time classification, unsupervised anomaly detection, and behavioral modeling

Continuously improve through feedback loops and active learning


🚨 ML helps flag suspicious activity before it turns into loss.


---

🔧 Tech Stack: Python | Scikit-learn | XGBoost | SHAP | FastAPI | Streamlit | AWS

🔄 The future of fintech is predictive, not reactive.

If you’re building intelligent financial systems—whether it’s for lending, fraud prevention, or personalization—let’s connect and exchange notes. 🚀

#Fintech #MachineLearning #CreditScoring #FraudDetection #ArtificialIntelligence #DataScience #FinancialInclusion #ResponsibleAI #Python #MLinFinance
🚀 Machine Learning for Customer Churn Prediction
https://youtu.be/da_xqw1oAD8

Understanding why customers leave is just as important as knowing why they stay.
With machine learning, businesses can spot early signs of churn—like drop in activity or purchase frequency—and take action before it’s too late.

Smarter retention starts with smarter prediction. 💡

#MachineLearning #CustomerChurn #AI #DataScience #BusinessIntelligence
4👍3