Epython Lab
6.76K subscribers
633 photos
30 videos
103 files
1.16K links
Welcome to Epython Lab, where you can get resources to learn, one-on-one trainings on machine learning, business analytics, and Python, and solutions for business problems.

Buy ads: https://telega.io/c/epythonlab
Download Telegram
Forwarded from Future Data Science(FDS)
Forwarded from Future Data Science(FDS)
4
🚀 How to Become a Self-Taught AI Developer?

AI is transforming the world, and the best part? You don’t need a formal degree to break into the field! With the right roadmap and hands-on practice, anyone can become an AI developer. Here’s how you can do it:

1️⃣ Master the Fundamentals of Programming

Start with Python, as it’s the most popular language for AI. Learn data structures, algorithms, and object-oriented programming (OOP). Practice coding on LeetCode and HackerRank.

👉How to get started Python:https://youtube.com/playlist?list=PL0nX4ZoMtjYGSy-rn7-JKt0XMwKBpxyoE&si=N8rHxnIYnZvF-WBz
How to Create & Use Python Virtual Environments | ML Project Setup + GitHub Actions CI/CD https://youtu.be/qYYYgS-ou7Q

👉Beginner's Guide to Python Programming. Getting started now: https://youtube.com/playlist?list=PL0nX4ZoMtjYGSy-rn7-JKt0XMwKBpxyoE&si=N8rHxnIYnZvF-WBz

👉Data Structures with Projects full tutorial for beginners
https://www.youtube.com/watch?v=lbdKQI8Jsok

👉OOP in Python - beginners Crash Course https://www.youtube.com/watch?v=I7z6i1QTdsw

2️⃣ Build a Strong Math Foundation

AI relies on:
🔹 Linear Algebra – Matrices, vectors (used in deep learning) https://youtu.be/BNa2s6OtWls
🔹 Probability & Statistics – Bayesian reasoning, distributions https://youtube.com/playlist?list=PL0nX4ZoMtjYEl_1ONxAZHu65DPCQcsHmI&si=tAz0B3yoATAjE8Fx
🔹 Calculus – Derivatives, gradients (used in optimization)

📚 Learn from 3Blue1Brown, Khan Academy, or MIT OpenCourseWare.

3️⃣ Learn Machine Learning (ML)

Start with traditional ML before deep learning:
✔️ Supervised Learning – Linear regression, decision trees https://youtube.com/playlist?list=PL0nX4ZoMtjYGV8Ff_s2FtADIPfwlHst8B&si=buC-eP3AZkIjzI_N
✔️ Unsupervised Learning – Clustering, PCA
✔️ Reinforcement Learning – Q-learning, deep Q-networks

🔗 Best course? Andrew Ng’s ML Course on Coursera.

4️⃣ Dive into Deep Learning

Once comfortable with ML, explore:
⚡️ Neural Networks (ANNs, CNNs, RNNs, Transformers)
⚡️ TensorFlow & PyTorch (Industry-standard deep learning frameworks)
⚡️ Computer Vision & NLP

Try Fast.ai or the Deep Learning Specialization by Andrew Ng.

5️⃣ Build Real-World Projects

The best way to learn AI? DO AI. 🚀
💡 Train models with Kaggle datasets
💡 Build a chatbot, image classifier, or recommendation system
💡 Contribute to open-source AI projects

6️⃣ Stay Updated & Join the AI Community

AI evolves fast! Stay ahead by:
🔹 Following Google AI, OpenAI, DeepMind
🔹 Engaging in Reddit r/MachineLearning, LinkedIn AI discussions
🔹 Attending AI conferences like NeurIPS & ICML

7️⃣ Create a Portfolio & Apply for AI Roles

📌 Publish projects on GitHub
📌 Share insights on Medium/Towards Data Science
📌 Network on LinkedIn & Kaggle

No CS degree? No problem! AI is about curiosity, consistency, and hands-on experience. Start now, keep learning, and let’s build the future with AI. 🚀

Tagging AI learners & enthusiasts: What’s your AI learning journey like? Let’s connect!. 🔥👇

#AI #MachineLearning #DeepLearning #Python #ArtificialIntelligence #SelfTaught
👍1
💰 Machine Learning is Reshaping Fintech — and we're just getting started.
FinTech ML Labs: https://www.youtube.com/playlist?list=PL0nX4ZoMtjYFuTnUcwv0aFnxN9pEyjVez

Two of the most mission-critical areas where ML is making a real-world impact today are:

1. 🔎 Credit Scoring

Traditional credit scoring often overlooks those without a deep financial history. With ML:

We analyze alternative data (e.g., transaction patterns, mobile usage, utility payments)

Apply classification algorithms to predict creditworthiness

Enable inclusive lending for underbanked populations


Outcome: More accurate risk assessment + financial inclusion.


---

2. 🛡️ Fraud Detection

Fraudsters evolve fast. ML evolves faster.

We train models on millions of transactions, identifying subtle anomalies

Use a mix of real-time classification, unsupervised anomaly detection, and behavioral modeling

Continuously improve through feedback loops and active learning


🚨 ML helps flag suspicious activity before it turns into loss.


---

🔧 Tech Stack: Python | Scikit-learn | XGBoost | SHAP | FastAPI | Streamlit | AWS

🔄 The future of fintech is predictive, not reactive.

If you’re building intelligent financial systems—whether it’s for lending, fraud prevention, or personalization—let’s connect and exchange notes. 🚀

#Fintech #MachineLearning #CreditScoring #FraudDetection #ArtificialIntelligence #DataScience #FinancialInclusion #ResponsibleAI #Python #MLinFinance
Forwarded from Epython Lab
💰 Machine Learning is Reshaping Fintech — and we're just getting started.
FinTech ML Labs: https://www.youtube.com/playlist?list=PL0nX4ZoMtjYFuTnUcwv0aFnxN9pEyjVez

Two of the most mission-critical areas where ML is making a real-world impact today are:

1. 🔎 Credit Scoring

Traditional credit scoring often overlooks those without a deep financial history. With ML:

We analyze alternative data (e.g., transaction patterns, mobile usage, utility payments)

Apply classification algorithms to predict creditworthiness

Enable inclusive lending for underbanked populations


Outcome: More accurate risk assessment + financial inclusion.


---

2. 🛡️ Fraud Detection

Fraudsters evolve fast. ML evolves faster.

We train models on millions of transactions, identifying subtle anomalies

Use a mix of real-time classification, unsupervised anomaly detection, and behavioral modeling

Continuously improve through feedback loops and active learning


🚨 ML helps flag suspicious activity before it turns into loss.


---

🔧 Tech Stack: Python | Scikit-learn | XGBoost | SHAP | FastAPI | Streamlit | AWS

🔄 The future of fintech is predictive, not reactive.

If you’re building intelligent financial systems—whether it’s for lending, fraud prevention, or personalization—let’s connect and exchange notes. 🚀

#Fintech #MachineLearning #CreditScoring #FraudDetection #ArtificialIntelligence #DataScience #FinancialInclusion #ResponsibleAI #Python #MLinFinance
Forwarded from Epython Lab
🚀 How to Become a Self-Taught AI Developer?

AI is transforming the world, and the best part? You don’t need a formal degree to break into the field! With the right roadmap and hands-on practice, anyone can become an AI developer. Here’s how you can do it:

1️⃣ Master the Fundamentals of Programming

Start with Python, as it’s the most popular language for AI. Learn data structures, algorithms, and object-oriented programming (OOP). Practice coding on LeetCode and HackerRank.

👉How to get started Python:https://youtube.com/playlist?list=PL0nX4ZoMtjYGSy-rn7-JKt0XMwKBpxyoE&si=N8rHxnIYnZvF-WBz
How to Create & Use Python Virtual Environments | ML Project Setup + GitHub Actions CI/CD https://youtu.be/qYYYgS-ou7Q

👉Beginner's Guide to Python Programming. Getting started now: https://youtube.com/playlist?list=PL0nX4ZoMtjYGSy-rn7-JKt0XMwKBpxyoE&si=N8rHxnIYnZvF-WBz

👉Data Structures with Projects full tutorial for beginners
https://www.youtube.com/watch?v=lbdKQI8Jsok

👉OOP in Python - beginners Crash Course https://www.youtube.com/watch?v=I7z6i1QTdsw

2️⃣ Build a Strong Math Foundation

AI relies on:
🔹 Linear Algebra – Matrices, vectors (used in deep learning) https://youtu.be/BNa2s6OtWls
🔹 Probability & Statistics – Bayesian reasoning, distributions https://youtube.com/playlist?list=PL0nX4ZoMtjYEl_1ONxAZHu65DPCQcsHmI&si=tAz0B3yoATAjE8Fx
🔹 Calculus – Derivatives, gradients (used in optimization)

📚 Learn from 3Blue1Brown, Khan Academy, or MIT OpenCourseWare.

3️⃣ Learn Machine Learning (ML)

Start with traditional ML before deep learning:
✔️ Supervised Learning – Linear regression, decision trees https://youtube.com/playlist?list=PL0nX4ZoMtjYGV8Ff_s2FtADIPfwlHst8B&si=buC-eP3AZkIjzI_N
✔️ Unsupervised Learning – Clustering, PCA
✔️ Reinforcement Learning – Q-learning, deep Q-networks

🔗 Best course? Andrew Ng’s ML Course on Coursera.

4️⃣ Dive into Deep Learning

Once comfortable with ML, explore:
⚡️ Neural Networks (ANNs, CNNs, RNNs, Transformers)
⚡️ TensorFlow & PyTorch (Industry-standard deep learning frameworks)
⚡️ Computer Vision & NLP

Try Fast.ai or the Deep Learning Specialization by Andrew Ng.

5️⃣ Build Real-World Projects

The best way to learn AI? DO AI. 🚀
💡 Train models with Kaggle datasets
💡 Build a chatbot, image classifier, or recommendation system
💡 Contribute to open-source AI projects

6️⃣ Stay Updated & Join the AI Community

AI evolves fast! Stay ahead by:
🔹 Following Google AI, OpenAI, DeepMind
🔹 Engaging in Reddit r/MachineLearning, LinkedIn AI discussions
🔹 Attending AI conferences like NeurIPS & ICML

7️⃣ Create a Portfolio & Apply for AI Roles

📌 Publish projects on GitHub
📌 Share insights on Medium/Towards Data Science
📌 Network on LinkedIn & Kaggle

No CS degree? No problem! AI is about curiosity, consistency, and hands-on experience. Start now, keep learning, and let’s build the future with AI. 🚀

Tagging AI learners & enthusiasts: What’s your AI learning journey like? Let’s connect!. 🔥👇

#AI #MachineLearning #DeepLearning #Python #ArtificialIntelligence #SelfTaught
👍3