Epython Lab
6.78K subscribers
633 photos
30 videos
103 files
1.16K links
Welcome to Epython Lab, where you can get resources to learn, one-on-one trainings on machine learning, business analytics, and Python, and solutions for business problems.

Buy ads: https://telega.io/c/epythonlab
Download Telegram
Python Notes.pdf
153.2 KB
Sometimes it's unable to load Jupyter Notebook on GitHub.

More resources @epythonlab #keynote

#github
👍5
Why You Should Use Virtual Environments & Structure ML Projects Professionally 🚀
When working on machine learning projects, managing dependencies and maintaining a clean, scalable structure is crucial. Without proper organization, projects quickly become messy, unmanageable, and prone to conflicts.

🔹 Why Use Virtual Environments?
A virtual environment (venv) allows you to:
Isolate dependencies for different projects. No more version conflicts!
Ensure reproducibility—your project runs the same anywhere.
Avoid system-wide installations that could break other Python applications.

How? https://youtu.be/qYYYgS-ou7Q

🔹 Why Structure ML Projects Properly?
A professional project structure helps with:
Scalability—separate concerns (data, API, models, notebooks)
Collaboration—team members can understand and contribute easily
Automation—CI/CD for deployment and model updates

Typical ML Project Structure: https://youtu.be/qYYYgS-ou7Q

🔹 Why Use Git, GitHub, and CI/CD?
Git & GitHub for version control & collaboration
CI/CD (e.g., GitHub Actions) for automating testing & deployments
Reproducibility & rollback—track and revert changes easily

💡 Pro Tip: Always maintain a README.md to document setup & usage instructions!

What challenges have you faced in structuring ML projects? Drop your thoughts below! 👇

#Python #MachineLearning #MLProject #GitHub #VirtualEnvironments #DataScience #CI_CD #SoftwareEngineering
👍4