E&P: Советы и хитрости
2.15K subscribers
654 photos
6 videos
17 files
570 links
Официальный канал семейства альянсов «Семья Лесного тролля», в котором мы делимся хитростями по игре Empires & Puzzles.

Содержание: https://t.me/ep_tricks/4

Связь: @rdushkin
Download Telegram
Опять же, давайте посмотрим, как будет выглядеть игра «Битва полов» в нормальной форме. Получается, что это матрица два на два, в ячейках которых записаны платежи для мужа и жены в случаях, когда оба выберут футбол, оба выберут мюзикл, либо они выберут различные мероприятия. По такой таблице как раз будет видно, что игра «Битва полов» является конкурентной, а в случае, когда игроки неинформированы о выборе противоположной стороны, прийти к равновесию сложно.

А, да. Характеристическая функция… Я обещал кратко упомянуть. Дело в том, что если у нас в игре более двух игроков, то мы можем рассматривать такие игры как игры двух коалиций игроков. И тогда игра сводится к игре двух игроков. Например, коалициями могут быть один игрок и все остальные. Если рассмотреть варианты разбиения игроков на коалиции, то для каждого такого разбиения можно записать вероятностное значение платежа. Так вот характеристическая функция переводит набор коалиций в этот вероятностный платёж. Доказано, что любую игру в любой форме можно представить в виде характеристической функции, но не наоборот. Так что это самый общий способ представления, но он же и самый сложный, так что мы пока пользоваться им не будем.

#ТеорияИгр #Математика

Больше историй по теории игр на @ep_tricks.
В этой игре под терминами «ястреб» и «голубь» понимаются игроки с воинственными или мирными стратегиями. Для получения какого-либо ресурса пары особей вступают в битву. Каждая особь может быть либо ястребом, либо голубем. Ястреб дерётся до конца и либо проигрывает, либо побеждает. Проигрыш несёт очень высокий уровень отрицательного платежа, в то время как выигрыш несёт значительный уровень положительного платежа. Поэтому из двух ястребов только один получает положительный платёж, а второй получает очень сильный отрицательный платёж. Если встречаются ястреб и голубь, то голубь всегда отступает, но при этом ничего не проигрывает. Если же встречаются два голубя, то оба проигрывают небольшое количество «психических ресурсов» для демонстрации своих достоинств, но они не дерутся, а побеждает тот из них, кто продемонстрировал свои достоинства лучше.

Рассматривать эту игру имеет смысл только с точки зрения популяции. Я не буду утомлять вас математическими выкладками, но надо просто разделить всю популяцию на ястребов и голубей, и доля ястребов будет равна какому-то числу от нуля до единицы. Теперь если рассчитать математическое ожидание величины выигрыша для разных ролей в зависимости от доли ястребов, то получится две прямые. Эти прямые можно отложить на графике, и они пересекутся в некоторой точке. Эта точка и будет равновесием Нэша, которое определяет долю ястребов в популяции и уровень платежа для обеих ролей. Отклонение от этой доли ястребов будет приводить к нестабильному состоянию популяции, которая будет стремиться вернуться в точку равновесия, восстановив расчётную долю ястребов.

Так, на этом пока всё. Понимаю, что немного утомил вас этими умозрительными описаниями, но они были необходимы для дальнейшего движения. Всё это потребуется нам в следующих модулях.

Ах, да. Чуть было не забыл. Что там у нас по поводу игры «Ультиматум». Она неоднократно использовалась для проведения психологических и социологических экспериментов, и оказалось, что люди, стоящие на позиции второго игрока, обычно отказывают, если их доля при делении меньше двадцати процентов, так как считают это несправедливым, а потому «пусть награда не достанется никому». Это абсолютно нерациональное поведение, рассогласующееся с выводами теории игр, и это надо принимать во внимание, когда мы взаимодействуем с людьми. Люди — это не рациональные экономические агенты, а иррациональные существа с кучей всякого хлама в голове. Такие дела.

#ТеорияИгр #Математика

Больше всякого интересного только на @ep_tricks.
Игра «Ястребы и голуби». В этой игре два игрока выбирают либо агрессивную стратегию, либо мягкую. Платежи составлены так, чтобы в игре было два равновесия Нэша в одиночной игре — это антикооперативные состояния, то есть оба игрока должны выбрать противоположные значения. Строгий Парето-оптимум тут один — когда оба игрока выбирают мягкую стратегию (они являются «голубями»). Выбор любого игрока агрессивной стратегии в этом случае ведёт к снижению платежа второго игрока.

#Математика #ТеорияИгр

Больше информации по теории игр вы найдёте на @ep_tricks.
=== ДОМИНИРОВАНИЕ ===

Привет, друзья!

Мы продолжаем погружаться в словарь и понятийный аппарат теории игр, и сегодня у нас на повестке дня новое важное понятие — доминирование. Если при этом слове у вас перед глазами появились всякие интересные образы в латексе и с плётками, то да, это примерно о том. Но в латекс в рамках теории игр одеваются состояния игр и стратегии. Стратегии доминируют одна над другой, причём могут это делать как слабо, так и сильно.

Ну ладно, от юмора к серьёзному делу. Что же такое доминирование? Да всё просто. Говорят, что одна стратегия доминирует над другой стратегией, если использование первой стратегии даёт не худший платёж, чем при использовании второй. Что это значит? Это значит, что если игрок использует первую стратегию, то он всегда при любых ходах других игроков получает платёж, который равен или больше платежей, которые он мог бы получить, если бы использовал другую стратегию.

При этом, само собой разумеется, можно говорить о слабом и сильном доминировании. Стратегия А сильно доминирует над стратегией Б тогда, когда при любых ходах противников игрок получает строго больший платёж при использовании стратегии А по сравнению со стратегией Б. Соответственно, слабое доминирование проявляется тогда, когда платёж при использовании стратегии А в некоторых ситуациях равен платежу при стратегии Б, но обязательно есть хотя бы одна ситуация, когда платёж при использовании стратегии А строго больше платежа при стратегии Б. Если на пальцах — то сильное доминирование это когда знак «больше», а слабое — когда знак «больше или равно» (но хотя бы в одном случае знак «больше»).

Ну и, кстати, если из двух стратегий А и Б ни одна не доминирует над другой, то такие стратегии называются нетранзитивными. Это означает, что в зависимости от выбора стратегий другими игроками, большие платежи игроку может обеспечивать как выбор стратегии А, так и стратегии Б. Нетранзитивность стратегий — частое свойство некооперативных игр.

Если немного поразмыслить, то становится понятно, что понятие «доминирование» тесно связано с равновесиями Нэша для многих игр. Действительно, если для какого-либо игрока в игре существует строго доминирующая стратегия над всеми другими его стратегиями, то он всегда её будет использовать в любом из равновесий Нэша. Если же все игроки в игре имеют ровно одну стратегию, доминирующую над всеми другими стратегиями, то в такой игре будет ровно одно равновесие Нэша, и находиться оно будет в ячейке пересечения доминирующих стратегий для всех игроков при рассмотрении игры в нормальной форме.

Если же рассмотреть строго доминируемые стратегии, то есть такие стратегии, для которых существуют другие стратегии, которые строго доминируют над ними, то оказывается, что они никогда не входят в равновесие Нэша ни для одного из игроков. Действительно, у игрока нет никакого рационального резона выбирать доминируемую стратегию, поэтому такие стратегии будут исключаться игроками, в связи с чем в равновесие Нэша они входить не будут. А вот слабо доминируемые стратегии в равновесие Нэша входить могут.

Надо отметить, что ни в одной из известных и рассмотренных нами к настоящему моменту игр нет строго доминирующих стратегий. Вместе с тем, во многих играх такие стратегии есть, и в дальнейшем при рассмотрении практических примеров мы их увидим.

#Математика #ТеорияИгр

Больше теории игр только на @ep_tricks.
Вся проблема с дилеммой заключённого состоит в том, что у каждого агента в этой игре предательство визави строго доминирует над сотрудничеством с ним. Действительно. Встанем на позицию первого игрока. У него есть выбор — не сдавать своего товарища или сдать его. И он рассуждает примерно так: «Если я сдам своего товарища тогда, когда он будет молчать, то я просто выйду на свободу. Если же он сдаст меня, то мне тем более надо сдавать его, тогда мы отсидим по два года, а не я один отмотаю каторгу десять лет». Точно также рассуждает второй игрок, поскольку игра симметричная. Таким образом оба получают по два года тюрьмы, в то время как если бы они оба сотрудничали друг с другом, то есть молчали бы перед следствием, то получили бы всего лишь по полгода тюрьмы каждый. Другими словами, в этой игре равновесие Нэша не совпадает с Парето-оптимальным решением, и в этом заключается дилемма.

Если записать эту игру в её нормальной форме, то и равновесие Нэша, и Парето-оптимум будут ясно видны. В этой игре нарушение коммуникации ведёт к тому, что каждый из агентов, заботясь о своём собственном максимальном выигрыше, получает неоптимальное решение. Ведь с точки зрения группы, то есть обоих заключённых, надо сотрудничать, хранить молчание и не сдавать своего товарища. Если он сделает также, то оба получат максимальный выигрыш. Но коммуникаций нет, поэтому получается так, как получается. И этим, кстати, пользуются правоохранители в реальной жизни — они не дают пойманным преступникам общаться, чтобы у тех была возможность договориться. Но и в других случаях третий агент может нарушать коммуникации между игроками, чтобы получить свою выгоду. Об этом надо помнить при разборе всякого рода случаев в политике, социологии, отношениях между людьми и так далее.

Давайте посмотрим на обобщённую формулировку этой игры. Если записать её нормальную форму, то в ней будет четыре типа платежей — C, D, c и d. Важно, чтобы для этих типов платежей выполнялось строгое неравенство: D > C > d > c. При этом платёж D отдаётся тому из игроков, кто предаёт сотрудничающего игрока, а платёж c отдаётся сотрудничающему с предателем игроку. Платёж C отдаётся обоим игрокам в случае их взаимного сотрудничества, а платёж d отдаётся обоим игрокам, если они оба предают. Значения этих платежей могут быть различны, но главное, чтобы выполнялось вот это неравенство. В этом случае игра сводится к дилемме заключённого, в которой рациональному агенту резонно предать и тем самым получить меньше, чем было бы, если бы он сотрудничал.

Но всё, что я рассказал, относится к теоретическим рациональным агентам. В реальной жизни при рассмотрении ситуаций, которые сводятся к дилемме заключённого, необходимо принимать различные нюансы и искажения, на основе которых люди ведут себя как не совсем рациональные агенты. Например, доверительные отношения между игроками чаще всего ведут к тому, что они будут сотрудничать с первого же хода, не договариваясь. Высокий уровень альтруизма также ведёт к этому. Ещё, например, религиозность человека положительно коррелирует с тем, что человек склонен к сотрудничеству. Так что при изучении того, как обычные люди принимают решения, стоит принимать во внимание различные факторы и скрытые параметры. Но чем больше мы отходим от людей и переходим к организационным системам, в которых решения принимаются на основе строгих бюрократических процедур, тем сильнее мы приходим к классической дилемме заключённого. И пример с гонкой вооружений я уже упоминал.

#Математика #ТеорияИгр

Больше теории игр только на @ep_tricks.
Тут надо отметить, что при рассмотрении этой игровой механики, игроками в ней являются не игроки в игру, а альянс и чудовище. Поэтому игра в нормальной форме выглядит так — с одной стороны игроки альянса с двумя вариантами стратегий: альтруистичной и эгоистичной, а с другой стороны чудовище, которое или даёт лут за использованное боевое снаряжение, или не даёт его, если боевого снаряжения использовано слишком мало. И тут получается парадокс — если боевого снаряжения хватило, то эгоисты получают больше всего лута, а альтруисты чуть поменьше, то есть эгоисты доминируют над альтруистами. А если боевого снаряжения не хватило, то эгоисты не получают ничего, а у альтруистов отрицательный платёж, так как они тратились зря. И опять эгоисты доминируют. Таким образом, получается, что эгоистичная стратегия доминирует над альтруистичной. Но тут получается дилемма — если все игроки альянса будут эгоистами, то никто не будет получать с чудовищ лута, и альянс перестанет развиваться. В долгосрочной перспективе эгоистичная стратегия приводит к стагнации и упадку.

Этот анализ даёт нам простые выводы — чтобы развивать альянс, необходимо вмешиваться в самоорганизацию своими регуляторными механизмами, то есть руководство альянса должно обязывать его членов использовать требуемое количество боевого снаряжения, чтобы все соратники альянса получали лут с прилетающих чудовищ, а альянс развивался. Чтобы обеспечить справедливое распределение, необходимо организовать очерёдность использования боевого снаряжения. Например, весь альянс может быть поделён на «отделения», и все члены отделения обязаны использовать боевое снаряжение в свою очередь.

Кстати, рассмотренный случай может быть проанализирован в общем виде. Для этого необходимо ввести несколько параметров: N — количество альтруистов в альянсе, P — количество требуемого боевого снаряжения, S — приведённая стоимость одной единицы боевого снаряжения, V — приведённая стоимость лута с чудовища для одного человека. В этом случае если использовано требуемое количество боевого снаряжения, то альтруисты получают платёж равный V – PS/N, а эгоисты получают платёж V. Если же чудовище не отдаёт лут, то альтруисты получают негативный платёж –(PS/N), а эгоисты получают платёж 0. Если в качестве значений параметров подставлять конкретные числа, которые можно взять из игры, то в результате можно рассчитать, сколько игроков должно быть в отделениях и по сколько единиц боевого снаряжения они должны использовать, чтобы получить максимальный лут. Оставляю это вам в качестве домашнего задания.

#ТеорияИгр #Математика #Титан

Больше теории игр только на @ep_tricks.
Однако с глобальной точки зрения чем больше голубей в игровом сообществе, тем проще получить заветное место в топ-1000. Поэтому многие игроки будут рассуждать примерно так: «Если подавляющее большинство игроков выберут миролюбивую стратегию, то мне имеет смысл выбрать агрессивную стратегию, чтобы без особой траты ресурсов войти в топ-1000». Как только количество игроков с подобной мыслью перевалит за некоторый порог, на границе рейтинга начнётся та самая борьба не на жизнь, а на смерть. И эта игра имеет повторяющийся характер, когда в динамике многие игроки меняют свою стратегию, исходя из своих прошлых результатов. Это тоже всё можно принимать во внимание при анализе ситуации и подготовке к событию с выбором стратегии. Но как это сделать — это уже совершенно другой вопрос, далеко выходящий за рамки нашего текущего рассмотрения.

Вместе с тем по этой игровой механике остаётся отметить, что в итоге после продолжительного времени в игре на глобальном уровне выстраивается такое же равновесное состояние, как и в классической игре «Ястребы и голуби», когда количество ястребов составляет определённую долю от игрового сообщества, причём эта доля заведомо превышает заветную тысячу победителей. Ну а сколько именно ястребов появляется в равновесном состоянии, я предлагаю оценить вам самостоятельно исходя из конкретных значений платежей для той конкретной игры и для той конкретной игровой механики, которые вы захотите рассмотреть в этом упражнении. Удачи.

#ТеорияИгр #Математика

Больше теории игр только на @ep_tricks.
Чтобы не томить, дам простое эмпирическое правило. Выкупаться имеет смысл только в «высшей лиге», то есть среди тех игроков, которые имеют самые сильные команды обороны и атаки. Если команды конкретного игрока до высшей лиги не дотягивают, то выкупаться для него смысла нет. Если же игроку из высшей лиги надо понять, выкупаться ему или нет, то тут действует очень простое правило — если выкуп делается в один из последних дней турнира (предпоследний или последний), и при этом команда обороны стоит крепко, отражая более 50 % атак на неё, то выкупаться стоит, и это будет выгодно. Впрочем, иногда имеет смысл выкупиться даже на второй день турнира, но тут надо считать. А упражнение по отрисовке дерева решений этой игры, то есть игры в развёрнутой форме, я оставляю вам в качестве самостоятельного задания.

#ТеорияИгр #Математика #Турнир

Больше всякого добра только на @ep_tricks. Подписывайся, если ещё не.
Тут можно дать пару советов. Во-первых, никогда нельзя навязывать соратникам по альянсу совместные покупки. Игра — дело добровольное, и мотивация для нахождения в альянсе заключается в получении приятных эмоций. Навязывание же чужой воли — это всегда эмоции неприятные. Поэтому те, кто делает совместные покупки, должны просто принять, что в альянсе будут те, кто не отблагодарит в ответ. А те, кто принципиально не делает покупок в играх, должны, в свою очередь, просто не париться на тему необходимости отблагодарить. Проще всего спокойным стилем объяснить свою позицию при вступлении в альянс.

Ну а второй совет очень простой. Те, кто делает совместные покупки на постоянной основе, могут договариваться и собирать временный альянс, в котором получать максимальный лут за то, что все соратники альянса сделают такие покупки. Это хороший вариант для коллективов, в которых есть доверие. Ну а если доверия нет, то в игру вступает ещё один инструмент теории игр — последовательные игры и кооперация. Но это совсем другая история, и мы её рассмотрим в модуле, полностью посвящённом Дилемме заключённого.

Ну вот, друзья. Мы рассмотрели интересный кейс по применению положений теории игр — изучили её возможности для исследования многопользовательских игр и получили рекомендации о том, как себя вести в них в нескольких типовых ситуациях. На этом всё, благодарим за внимание, оставайтесь на связи и пока.

#ТеорияИгр #Математика

Больше всякого хорошего только на @ep_tricks.
=== РАСЧЁТЫ ДЛЯ СРАВНЕНИЯ ===

Привет, друзья.

В комментариях подняли важный вопрос — почему все говорят о том, что 🟣 Тибуртус в костюме лучше, чем без костюма. Действительно, почему? Конечно, математика даёт нам чёткий ответ на это, но сейчас мы на примере Тибуртуса постараемся на пальцах и при помощи пары простых формул показать, как формально считать то, что многие воспринимают интуитивно. Да, и мы будем рассматривать оборону, так как в атаке, мы надеемся, что каждый игрок действует осознанно в соответствии с поставленными целями. А бот в обороне играет примерно случайно, так как его искусственный интеллект даже с интеллектом макаки, случайно нажимающей на кнопки, сложно сравнить.

Итак, смотрим. Тибуртус без костюма наносит урон троим, то есть иногда он может ударить в угол и нанести урон вообще двоим. Это произойдёт в 2/5 случаев, то есть мы должны взять 2 героя с нанесённым уроном 295 % + 147.5 % и умножить на 0.4. Получается 0.4 × (295 + 147.5) = 177 %. Теперь рассмотрим случай, когда Тибуртус бьёт в троих, вероятность этого 3/5. Формула та же: 0.6 × (295 + 147.5 + 147.5) = 354 %. Складываем: 177 + 354 = 531 % урона в среднем нанесёт Тибуртус без костюма в совокупности за один свой удар. Да, что такое 147.5 %? Это «незначительный урон ближайшим врагам», он в два раза меньше основного урона.

Теперь считаем для костюмированной версии. Здесь формула намного проще — 175 урона всем врагам: 5 × 175 = 875 % урона в совокупности всем врагам, причём не в среднем, а гарантированно.

Думаем, что сравнить числа 531 и 875 вы сможете и без нас :)

В качестве домашнего задания посчитайте совокупный срез брони для костюма и без него. А особо впечатлительным читателям предлагаем сделать оценку того, как влияет на исход боя длительность дебаффа брони (6 и 4 хода). [Спойлер: практически никак].

#Математика #Формула #Тибуртус #Сравнение #Костюм #Совет #Хитрость

Такие хитрости ты найдёшь только на @ep_tricks. Подписывайся, если ещё не.
=== ПРОВЕРКА ФИНСКОГО РЭНДОМА ===

Привет, друзья. Тут у Тролля накопилось более 600 серых жетонов (он всё копит), и мы ему посоветовали под запись всё скрутить и подсчитать частотные вероятности различных категорий призывов, чтобы проверить знаменитый финский рэндом. Сказано — сделано! Он скрутил ровно 486 серых жетонов, оставив 200 штук на следующий ПД. Результаты вы можете посмотреть в его прикольном видео. И далее будет немного математики. Передаём слово постановщику эксперимента...

——————————
Друзья, на связи Лесной тролль собственной персоной. Я тут скрутил 486 серых жетонов и немного проверил теоретические вероятности, о которых говорят финны в своей игре. Результаты плачевны. Но обо всём по порядку.

Вы должны понимать, что рэндом — это не равномерность. Хорошие ГПСЧ как раз характеризуются тем, что они далеки от равномерного распределения генерируемых чисел. На малых выборках не просто могут, но и должны быть мощные статистические выбросы. Типа как у меня в этом эксперименте произошло — три 2* зелёных отряда подряд. Но на очень больших выборках, конечно же, должна выполняться теорема о больших числах, так что частотные вероятности должны приближаться к теоретическим.

Проверим. Итак, что нам дадут 486 скруток? Протокол для верификации и статистические расчёты вы можете увидеть в этой таблице. В видео по ссылке выше можно увидеть итоговые результаты самих призывов, что также может использоваться для верификации, если кому-то это интересно. Но результаты оказались странными — 486 объектов наблюдения не хватило для того, чтобы обеспечить репрезентативность выборки. Чтобы это понять, можно обратиться к столбцу F в таблице, в котором приведены 99 % доверительные интервалы для каждой частотной вероятности. И оказывается, что ни одна из теоретических вероятностей не вошла в 99 % доверительный интервал. Это крайне странно.

Скорее всего, именно из-за этого результаты проверки рэндома оказались далеки от идеальных. Да, по этим результатам финский рэндом работает совсем не так, как должен. Чтобы понять это, смотрите прилагаемые графики — это распределение по цветам пойманных героев и отрядов во всех шести категориях. И круговая диаграмма — это полученные частотные вероятности выпадения героев и отрядов во всех шести категориях, которые выпадают за серые жетоны. Вторая круговая диаграмма — это теоретические вероятности того же. Да, издалека они похожи, но не очень-то и похожи, если присмотреться.

В общем, на мой взгляд это первая в русскоязычном сообществе систематическая попытка проверить функцию ГСПЧ, которую используют финны, но пока она не увенчалась успехом. Впрочем, это может быть не очень правильная моя интерпретация, и я готов обсудить в комментариях, что и как. Пишите...

#Эксперимент #Математика #Статистика #Рэндом

P. S.: Ну и для валидации результатов любой желающий может провести подобный эксперимент с сохранением протокола для последующей верификации. Множество таких экспериментов может быть в итоге объединено, чтобы в итоге добиться репрезентативности, что позволит проверить финский ГСПЧ.

Подобные крутые материалы только на @ep_tricks.
=== РАСЧЁТ ОБЪЁМА ЛУТА ЗА ТУРНИРЫ ===

Всем привет, друзья. Давно я собирался сесть за эту заметку, да всё никак не мог найти времени. И вот у меня сегодня полный перегруз на всех работах, а я сажусь. Да, прокрастинация — она такая сучка.

В общем, смотрите. Я постоянно слышу заплачки про то, что после изменения схемы выдачи эфира за результаты турнира стремиться в Топ 1 % стало бессмысленно, проще в Топ 5 % получать чаще больше, чем за первые места. Даю вам математический расчёт того, что стало лучше для Топ 1 % (ну и для других категорий тоже стало лучше).

▪️Раньше нам давали 4 гарантированных эфира за Топ 1 %. Да, они разные бывали, но гарантированно было именно 4 эфира. И всем было понятно, всё было детерминировано.

▪️Теперь нам дают от 0 до 6 эфиров за Топ 1 %. И это как будто бы неприятно, так как можно попасть в Топ 1 % и не получить эфира вообще. Это случается с вероятностью 0.000281216, то есть если умножить это на 1 151 400 активных игроков 20+ уровня, то еженедельно в среднем жопа горит примерно у троих человек в мире. Не так-то много, но тем не менее. Кстати, еженедельно с вероятностью 0.047412216 выпадает 6 эфиров, то есть примерно 546 человек в мире скачут от радости.

Значит так. Расчёт следующий. 3 попытки * 0.87 + 2 попытки * 0.60 _ 1 попытка * 0.20 = 4.01. Да, на 0.01, на одну, сука, сотую эфира стало лучше, чем было. Вы скажете, что одна сотая эфира — это полная херня. Нет, не херня. Раньше давали 4 эфира за Топ 1 %, а сейчас дают 4.01 эфира за Топ 1 %, а это значит, что в неделю в игре появляется на 46 171 – 46 056 = 115 эфиров больше, чем появлялось раньше. Из них — 19 эфиров 5*.

Для игровой экономики это довольно существенно.

Поэтому прекратите ныть на тему, что стало хуже. Стало лучше. Просто субъективно воспринимается, что стало хуже. Такое бывает...

Ах, да. Всё же, больше нытья богу нытья!

#Математика #Статистика #Расчёт #Турнир #Эфир

@ep_tricks