خانه ژورنال دانشجویان ایران ( Iranian Students Article House , www.entofa.net )
.
عنوان فارسی مقاله : الگوریتم بهینه سازی ازدحام ذرات با کنترل هوشمند تعداد ذرات برای طراحی بهینه ماشین های الکتریکی
.
English Article Title: Particle Swarm Optimization Algorithm with Intelligent Particle Number Control for Optimal Design of Electric Machines
Year: 2018
Publisher: IEEE
Journal: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
DOI: https://doi.org/10.1109/TIE.2017.2760838
Keywords:
#Optimal_Design
#Optimization_Algorithm
#Particle_Swarm_Optimization
#Electric_Machine
#Interior_Permanent_Magnet_Synchronous_Motor
#طراحی_بهینه
#کنترل_هوشمند
#ماشینهای_الکتریکی
#الگوریتم_بهینهسازی
#بهینهسازی_ذرات
#ماشین_الکتریکی
#موتور_همگام_مگنت_دائمی
#علوم_پایه_و_فنی_مهندسی (#Physical_Sciences_and_Engineering)
#مقاله_انرژی (#Energy)
#مقاله_مهندسی (#Engineering)
چکیده مقاله:
در این مقاله، یک الگوریتم بهینه سازی ازدحام ذرات (PSO) اصلاح شده پیشنهاد می شود که نسخه ارتقاء یافته الگوریتم PSO معمولی است. برای بهبود دادن عملکرد الگوریتم PSO ، یک روش جدید برای کنترل کردن هوشمندانه تعداد ذرات به کار برده شده است. این روش جدید، مقدار هزینه بهترین جهانی (gbest) در تکرار فعلی نسبت به gbest در تکرار قبلی را با یکدیگر مقایسه می کند. اگر بین دو مقدار هزینه اختلافی وجود داشته باشد، آنگاه الگوریتم پیشنهادی در مرحله اکتشاف عمل می کند و تعداد ذرات را حفظ می کند. اما، وقتی که اختلاف در مقادیر هزینه نسبت به مقادیر تحمل تخصیص یافته توسط کاربر کوچکتر باشد، این الگوریتم پیشنهادی در مرحله استخراج عمل می کند و تعداد ذرات را کاهش می دهد. علاوه بر این، این الگوریتم ، نزدیکترین ذره به بهترین ذره را حذف می کند تا از تصادفی بودنش بر حسب فاصله ی اقلیدسی اطمینان حاصل کند. الگوریتم پیشنهادی با استفاده از پنج تابع آزمون عددی اعتبارسنجی می شود، که تعداد فراخوانی های تابع تا اندازه ای نسبت به PSO معمولی کاهش می یابد. بعد از اعتبار سنجی الگوریتم ، برای طراحی بهینه موتور سنکرون مغناطیس دائم درونی (IPMSM) به کار برده می شود تا اعوجاج هارمونیک کل (THD) نیروی ضد محرکه الکتریکی (back-EMF) کاهش یابد. با در نظر گرفتن شرط عملکرد، طراحی بهینه به دست می آید که back-EMF THD را کاهش داده و مقدار back-EMF را برآورده می کند. نهایتا، یک مدل آزمایشگاهی را ایجاد کرده و آزمایش می کنیم. برای اعتبارسنجی عملکرد طراحی بهینه و الگوریتم بهینه سازی ، یک آزمایش بدون بار انجام می شود. بر اساس نتایج آزمایشگاهی، اثربخشی الگوریتم پیشنهادی بر روی طراحی بهینه یک ماشین الکتریکی تایید می شود.
کلمات کلیدی: طراحی بهینه | الگوریتم بهینه سازی | بهینه سازی ذرات ذرات | ماشین الکتریکی | موتور همگام مگنت دائمی
لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/37nuxih
.
عنوان فارسی مقاله : الگوریتم بهینه سازی ازدحام ذرات با کنترل هوشمند تعداد ذرات برای طراحی بهینه ماشین های الکتریکی
.
English Article Title: Particle Swarm Optimization Algorithm with Intelligent Particle Number Control for Optimal Design of Electric Machines
Year: 2018
Publisher: IEEE
Journal: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
DOI: https://doi.org/10.1109/TIE.2017.2760838
Keywords:
#Optimal_Design
#Optimization_Algorithm
#Particle_Swarm_Optimization
#Electric_Machine
#Interior_Permanent_Magnet_Synchronous_Motor
#طراحی_بهینه
#کنترل_هوشمند
#ماشینهای_الکتریکی
#الگوریتم_بهینهسازی
#بهینهسازی_ذرات
#ماشین_الکتریکی
#موتور_همگام_مگنت_دائمی
#علوم_پایه_و_فنی_مهندسی (#Physical_Sciences_and_Engineering)
#مقاله_انرژی (#Energy)
#مقاله_مهندسی (#Engineering)
چکیده مقاله:
در این مقاله، یک الگوریتم بهینه سازی ازدحام ذرات (PSO) اصلاح شده پیشنهاد می شود که نسخه ارتقاء یافته الگوریتم PSO معمولی است. برای بهبود دادن عملکرد الگوریتم PSO ، یک روش جدید برای کنترل کردن هوشمندانه تعداد ذرات به کار برده شده است. این روش جدید، مقدار هزینه بهترین جهانی (gbest) در تکرار فعلی نسبت به gbest در تکرار قبلی را با یکدیگر مقایسه می کند. اگر بین دو مقدار هزینه اختلافی وجود داشته باشد، آنگاه الگوریتم پیشنهادی در مرحله اکتشاف عمل می کند و تعداد ذرات را حفظ می کند. اما، وقتی که اختلاف در مقادیر هزینه نسبت به مقادیر تحمل تخصیص یافته توسط کاربر کوچکتر باشد، این الگوریتم پیشنهادی در مرحله استخراج عمل می کند و تعداد ذرات را کاهش می دهد. علاوه بر این، این الگوریتم ، نزدیکترین ذره به بهترین ذره را حذف می کند تا از تصادفی بودنش بر حسب فاصله ی اقلیدسی اطمینان حاصل کند. الگوریتم پیشنهادی با استفاده از پنج تابع آزمون عددی اعتبارسنجی می شود، که تعداد فراخوانی های تابع تا اندازه ای نسبت به PSO معمولی کاهش می یابد. بعد از اعتبار سنجی الگوریتم ، برای طراحی بهینه موتور سنکرون مغناطیس دائم درونی (IPMSM) به کار برده می شود تا اعوجاج هارمونیک کل (THD) نیروی ضد محرکه الکتریکی (back-EMF) کاهش یابد. با در نظر گرفتن شرط عملکرد، طراحی بهینه به دست می آید که back-EMF THD را کاهش داده و مقدار back-EMF را برآورده می کند. نهایتا، یک مدل آزمایشگاهی را ایجاد کرده و آزمایش می کنیم. برای اعتبارسنجی عملکرد طراحی بهینه و الگوریتم بهینه سازی ، یک آزمایش بدون بار انجام می شود. بر اساس نتایج آزمایشگاهی، اثربخشی الگوریتم پیشنهادی بر روی طراحی بهینه یک ماشین الکتریکی تایید می شود.
کلمات کلیدی: طراحی بهینه | الگوریتم بهینه سازی | بهینه سازی ذرات ذرات | ماشین الکتریکی | موتور همگام مگنت دائمی
لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/37nuxih
ieeexplore.ieee.org
Particle Swarm Optimization Algorithm With Intelligent Particle Number Control for Optimal Design of Electric Machines
In this study, we propose a modified particle swarm optimization (PSO) algorithm, which is an improved version of the conventional PSO algorithm. To improve the performance of the conventional PSO, a novel method is applied to intelligently control the number…