مقاله isi علوم پایه و فنی مهندسی (فیزیک، شیمی، ریاضی، کامپیوتر، انواع مهندسی و ...) با ترجمه
677 subscribers
17 photos
1 video
314 links
مقاله ISI با ترجمه آماده
ترجمه تخصصی
مقاله نویسی و رزومه
پایان نامه

کانال شامل #مقاله_isi رشته های:
#مقاله_مهندسی_شیمی
#مقاله_شیمی
#مقاله_کامپیوتر
#مقاله_انرژی
#مقاله_مهندسی
#مقاله_علوم_مواد
#مقاله_ریاضی
#مقاله_فیزیک



Admin: @entofa_net
web: entofa.net
Download Telegram
.
خانه ژورنال دانشجویان ایران (Iranian Students Article House)
.
عنوان فارسی مقاله : تشخیص چهره عمیق با استفاده از داده های ناقص صورت
.
English Article Title: Deep face recognition using imperfect facial data
Year: 2019
Publisher: ELSEVIER
Journal: Future Generation Computer Systems
DOI: doi.org/10.1016/j.future.2019.04.025

Keywords:
#Face_recognition
#Physical_Sciences_and_Engineering
#Convolutional_neural_networks
#Deep_learning
#Cosine_similarity
#Computer_Science
#علوم_پایه_و_فنی_مهندسی
#مقاله_کامپیوتر
#تشخیص_چهره
#شبکه_عصبی_پیچشی
#یادگیری_عمیق
#شباهت_کسینوسی

چکیده مقاله: امروزه تشخیص چهره مبتنی بر کامپیوتر یک مکانیسم بالغ و قابل اطمینان است که به طور عمده برای بسیاری از سناریوهای کنترل دسترسی مورد استفاده قرار می گیرد. به این ترتیب که تشخیص چهره یا احراز هویت عمدتا با استفاده از داده های کامل از تصاویر جلوی صورت انجام می شود. اگرچه ممکن است در عمل این مورد پیش بیاید، اما موقعیت های متعددی وجود دارد که ممکن است تصاویر کامل جلوی صورت در دسترس نباشد - تصاویر چهره ناقص که اغلب از دوربین های مدار بسته می آیند، شامل این موارد هستند. از این رو، مسئله تشخیص چهره مبتنی بر رایانه با استفاده از اطلاعات جزئی به عنوان شاخص هنوز هم تا حد زیادی یک حوزه تحقیق ناشناخته است. با توجه به این که به طور ذاتی انسانها و رایانه ها در تشخیص چهره و احراز هویت متفاوت هستند، باید جالب و جذاب باشد که بدانند یک رایانه زمانی که با یک چالش تشخیص چهره روبرو می شود چگونه به اجرای مختلف صورت توجه می کند. در این کار، ما این پرسش را بررسی میکنیم که ایده تشخیص چهره با استفاده از اطلاعات جزئی صورت را در بر می گیرد. ما این مسئله را با استفاده از آزمایش های جدید برای تست عملکرد یادگیری ماشین با استفاده از تصاویر جزئی چهره و دستکاری های دیگر در تصاویر چهره مانند چرخش و زوم، که به عنوان سرنخهای آموزش و تشخیص استفاده شده است، مورد بررسی قرار دادیم. به طور ویژه، ما میزان تشخیص را با توجه به قسمت های مختلف صورت مانند چشم ها، دهان، بینی و گونه مطالعه می کنیم. ما همچنین به بررسی تشخیص چهره با چرخش صورت و بزرگنمایی تصویر صورت پرداختیم. آزمایشات ما بر اساس استفاده از معماری مبتنی بر شبکه عصبی پیچشی پیشرفته با مدل VGG-Face آموزش دیده از قبل است که از طریق آن ویژگی ها را برای یادگیری ماشین استخراج می کنیم. سپس از دو طبقه بند، يعني شباهت کوسینوسی و ماشین های بردار برای بررسی نرخهای تشخیص استفاده مي شود. ما آزمایش های ما را روی دو مجموعه داده عمومی که شامل FEI کنترل شده برزیل و مجموعه داده کنترل نشده LFW هستند انجام دادیم. نتایج ما نشان می دهد که بخش های منحصر به فرد چهره مانند چشم ها، بینی ها و گونه ها دارای نرخ تشخیص کم هستند، اما زمانی که بخش های فردی صورت ترکیب شده به عنوان شاخص معرفی می شوند، میزان تشخیص به سرعت در حال افزایش است.
کلمات کلیدی: تشخیص چهره ، شبکه عصبی پیچشی ، یادگیری عمیق ، شباهت کسینوسی

لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/2rweIXe