Модули сильно зависят друг от друга. Изменения в одном модуле требуют изменений в других.
Модуль выполняет несколько различных задач. Трудно поддерживать и изменять код.
Содержат слишком много логики. Длинные и сложные для понимания.
Один и тот же код повторяется в нескольких местах.
Код не покрыт тестами. Трудно проверять корректность.
Имена не отражают назначение. Трудно понять код.
Логика кода трудна для понимания. Много условных операторов.
Нет комментариев и документации.
Высокое сцепление:
type UserService struct {
userRepository UserRepository
emailService EmailService
}
Низкая связанность:
type UserService struct {
db Database
businessLogic BusinessLogic
notificationService NotificationService
}
Большие функции и классы:
func ProcessData() {
// Много строк кода
}
Дублирование кода:
func CalculateSum(a, b int) int {
return a + b
}
func AddNumbers(x, y int) int {
return x + y
}
Неразборчивые имена:
func DoSomething(x int) int {
return x * 2
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Включает различные методы, позволяющие процессам обмениваться данными и сигналами.
Однонаправленные каналы между родительским и дочерним процессами. Обмен данными между произвольными процессами.
Обмен сообщениями через общую очередь. System V, POSIX message queues.
Совместное использование памяти для обмена данными. POSIX (
shm_open
), System V shared memory.Синхронизация доступа к ресурсам. POSIX (
sem_open
), System V semaphores.Обмен данными через сетевые соединения. Unix domain sockets, TCP/UDP.
Отправка и обработка событий.
kill()
, signal()
в Unix.Обмен данными через файлы или базы данных. Файлы, SQLite.
Каналы (Pipes)
package main
import (
"fmt"
"os"
"syscall"
)
func main() {
fd := make([]int, 2)
if err := syscall.Pipe(fd); err != nil {
fmt.Println("Ошибка создания канала:", err)
os.Exit(1)
}
pid, err := syscall.ForkExec("", nil, &syscall.ProcAttr{Files: []uintptr{uintptr(fd[0]), uintptr(fd[1]), uintptr(os.Stderr.Fd())}})
if err != nil {
fmt.Println("Ошибка создания процесса:", err)
os.Exit(1)
}
if pid == 0 { // Child process
syscall.Close(fd[0])
_, err := syscall.Write(fd[1], []byte("Hello"))
if err != nil {
fmt.Println("Ошибка записи в канал:", err)
}
syscall.Close(fd[1])
} else { // Parent process
buffer := make([]byte, 5)
syscall.Close(fd[1])
_, err := syscall.Read(fd[0], buffer)
if err != nil {
fmt.Println("Ошибка чтения из канала:", err)
}
syscall.Close(fd[0])
fmt.Printf("Получено: %s\n", buffer)
}
}
Общая память (Shared Memory)
package main
import (
"fmt"
"os"
"syscall"
)
func main() {
// Создание сегмента разделяемой памяти
segmentID, _, err := syscall.Syscall(syscall.SYS_SHMGET, uintptr(syscall.IPC_PRIVATE), uintptr(4), uintptr(syscall.S_IRUSR|syscall.S_IWUSR))
if err != 0 {
fmt.Println("Ошибка создания сегмента разделяемой памяти:", err)
os.Exit(1)
}
// Присоединение к сегменту
sharedMemory, _, err := syscall.Syscall(syscall.SYS_SHMAT, segmentID, 0, 0)
if err != 0 {
fmt.Println("Ошибка присоединения к разделяемой пам
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Позволяют синхронизировать доступ к ограниченным ресурсам, в данном случае — к оперативной памяти. Семафор может быть инициализирован значением 1, указывая, что доступен только один слот памяти. Когда один из процессов захватывает семафор, другой процесс будет заблокирован, пока семафор не освободится.
package main
import (
"fmt"
"sync"
"time"
)
var mutex sync.Mutex
func process(id int) {
mutex.Lock() // Захват семафора
fmt.Printf("Process %d: Accessing memory\n", id)
time.Sleep(2 * time.Second) // Имитируем доступ к памяти
fmt.Printf("Process %d: Releasing memory\n", id)
mutex.Unlock() // Освобождение семафора
}
func main() {
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
process(1)
}()
go func() {
defer wg.Done()
process(2)
}()
wg.Wait()
}
Обеспечивают эксклюзивный доступ к критической секции. Один процесс захватывает мьютекс перед доступом к памяти, другой процесс будет заблокирован до освобождения мьютекса.
package main
import (
"fmt"
"sync"
"time"
)
var mutex sync.Mutex
func process(id int) {
mutex.Lock() // Захват мьютекса
fmt.Printf("Process %d: Accessing memory\n", id)
time.Sleep(2 * time.Second) // Имитируем доступ к памяти
fmt.Printf("Process %d: Releasing memory\n", id)
mutex.Unlock() // Освобождение мьютекса
}
func main() {
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
process(1)
}()
go func() {
defer wg.Done()
process(2)
}()
wg.Wait()
}
Может быть использована для координации доступа к памяти, позволяя процессам обмениваться сообщениями о доступности ресурса.
package main
import (
"fmt"
"time"
)
type Message struct {
processID int
}
func accessMemory(processID int) {
fmt.Printf("Process %d: Accessing memory\n", processID)
time.Sleep(2 * time.Second) // Имитируем доступ к памяти
fmt.Printf("Process %d: Releasing memory\n", processID)
}
func main() {
msgChannel := make(chan Message)
go func() {
// "Дочерний" процесс
message := Message{processID: 1}
msgChannel <- message
msg := <-msgChannel
accessMemory(msg.processID)
}()
go func() {
// "Родительский" процесс
message := Message{processID: 2}
msgChannel <- message
msg := <-msgChannel
accessMemory(msg.processID)
}()
msg := <-msgChannel // Получаем сообщение от дочернего процесса
msgChannel <- msg // Отправляем обратно для завершения доступа
msg = <-msgChannel // Получаем сообщение от родительского процесса
msgChannel <- msg // Отправляем обратно для завершения доступа
time.Sleep(3 * time.Second) // Подождем завершения горутин
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Объектно-ориентированное программирование (ООП) в Go и C# реализовано с использованием различных подходов и парадигм, отражающих философию и дизайн каждого языка.
Используются структуры (
struct
).type Person struct {
Name string
Age int
}
func (p *Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
Используется композиция вместо наследования.
type Employee struct {
Person
Position string
}
Модификаторы доступа на уровне пакета (экспортируемые и неэкспортируемые поля).
type Person struct {
name string // неэкспортируемое поле
Age int // экспортируемое поле
}
Реализуется через интерфейсы.
type Greeter interface {
Greet()
}
type Person struct {
Name string
}
func (p *Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
Используются классы.
public class Person {
public string Name { get; set; }
public int Age { get; set; }
public void Greet() {
Console.WriteLine($"Hello, my name is {Name}");
}
}
Поддерживается классическое наследование.
public class Employee : Person {
public string Position { get; set; }
}
Модификаторы доступа (
public
, private
, protected
).public class Person {
private string name;
public int Age { get; set; }
}
Через виртуальные методы и интерфейсы.
public class Person {
public virtual void Greet() {
Console.WriteLine("Hello!");
}
}
public class Employee : Person {
public override void Greet() {
Console.WriteLine("Hello, I am an employee!");
}
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Объектно-ориентированная модель отличается от традиционных ООП-языков, таких как C# или Java. Нет классов и наследования в привычном понимании. Вместо этого используются структуры (structs) и интерфейсы для реализации основных принципов ООП: инкапсуляции, композиции и полиморфизма.
Служат аналогом классов. Они позволяют объединять данные в логически связанные группы.
type Person struct {
Name string
Age int
}
Могут быть определены для структур, что позволяет связывать функции с типами.
func (p Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
Достигается через модификаторы доступа на уровне пакета. Поля и методы, начинающиеся с заглавной буквы, экспортируемые (public), остальные — нет (private).
type Person struct {
name string // неэкспортируемое поле
Age int // экспортируемое поле
}
Go не поддерживает классическое наследование. Вместо этого используется композиция для включения функциональности одного типа в другой.
type Employee struct {
Person
Position string
}
Используются для определения поведения. Типы могут реализовывать интерфейсы неявно, просто предоставляя методы, указанные в интерфейсе.
type Greeter interface {
Greet()
}
func SayHello(g Greeter) {
g.Greet()
}
type Person struct {
Name string
}
func (p Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
func main() {
p := Person{Name: "John"}
SayHello(p)
}
Достигается через интерфейсы. Любой тип, который реализует интерфейс, может быть использован вместо него.
type Greeter interface {
Greet()
}
func SayHello(g Greeter) {
g.Greet()
}
type Robot struct {
ID string
}
func (r Robot) Greet() {
fmt.Printf("Greetings, I am robot %s\n", r.ID)
}
func main() {
p := Person{Name: "John"}
r := Robot{ID: "XJ-9"}
SayHello(p)
SayHello(r)
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Реализуют разные концепции и обладают различными характеристиками. Встраивание используется для композиции и повторного использования кода, а не для создания иерархий классов, как в традиционном наследовании.
Наследование: В языках с традиционным ООП, таких как C# или Java, наследование создает иерархии классов, где подклассы наследуют свойства и методы суперклассов. Подклассы могут переопределять методы суперклассов (полиморфизм) и добавлять новые методы.
Встраивание: Go не поддерживает иерархии классов. Встраивание позволяет включать типы в другие типы без создания строгих иерархий. Встраивание не создает отношений "is-a" (как в наследовании), а реализует отношения "has-a". Здесь
Employee
наследует свойства и методы Person
.public class Person {
public string Name { get; set; }
public void Greet() {
Console.WriteLine($"Hello, my name is {Name}");
}
}
public class Employee : Person {
public string Position { get; set; }
}
Здесь
Employee
включает Person
как встроенное поле, но не наследует его в традиционном смысле.type Person struct {
Name string
}
func (p Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
type Employee struct {
Person
Position string
}
func main() {
e := Employee{Person: Person{Name: "John"}, Position: "Developer"}
e.Greet() // Вызов метода Greet из встроенного типа Person
fmt.Println("Position:", e.Position)
}
Наследование: Создает жесткую связь между классами, что может привести к хрупким и негибким иерархиям. Подклассы зависят от реализации суперклассов, что может привести к проблемам при изменении суперклассов.
Встраивание: Используется композиция, что способствует более гибкой и модульной архитектуре. Встроенные типы могут быть заменены или изменены без изменения иерархии.
Наследование: Подклассы могут переопределять методы суперклассов, что является основой для полиморфизма.
Встраивание: методы встроенных типов могут быть "переопределены" путем объявления методов с теми же именами в внешнем типе, но это не является полноценным переопределением как в наследовании. Вызов методов не поддерживает виртуальные методы как в C# или Java.
type Person struct {
Name string
}
func (p Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
type Employee struct {
Person
}
func (e Employee) Greet() {
fmt.Println("Hello, I am an employee")
}
func main() {
e := Employee{Person: Person{Name: "John"}}
e.Greet() // Вызов метода Greet из Employee
e.Person.Greet() // Вызов метода Greet из встроенного типа Person
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Существует несколько способов написания обобщенного кода. До выхода Go 1.18, который представил встроенную поддержку обобщений (generics), разработчики использовали различные техники для достижения аналогичного эффекта.
С выходом Go 1.18 язык получил встроенную поддержку обобщений, позволяющую создавать обобщенные функции и типы. Это позволяет писать код, который работает с любыми типами, определенными параметрами.
package main
import "fmt"
func Map[T any](arr []T, f func(T) T) []T {
result := make([]T, len(arr))
for i, v := range arr {
result[i] = f(v)
}
return result
}
func main() {
nums := []int{1, 2, 3, 4}
doubled := Map(nums, func(n int) int { return n * 2 })
fmt.Println(doubled) // [2, 4, 6, 8]
}
Пример обобщенного типа:
package main
import "fmt"
type Pair[T any, U any] struct {
First T
Second U
}
func main() {
p := Pair[int, string]{First: 1, Second: "one"}
fmt.Println(p) // {1 one}
}
До появления обобщений, интерфейсы были основным способом достижения обобщенности. Интерфейсы позволяют определять функции, которые могут работать с любыми типами, реализующими определенные методы.
package main
import "fmt"
type Stringer interface {
String() string
}
func Print(s Stringer) {
fmt.Println(s.String())
}
type Person struct {
Name string
}
func (p Person) String() string {
return p.Name
}
func main() {
p := Person{Name: "Alice"}
Print(p) // Alice
}
Пустой интерфейс (
interface{}
) может содержать значения любого типа. Это позволяет создавать функции, принимающие значения любых типов, но требует явного приведения типов.package main
import "fmt"
func Print(v interface{}) {
fmt.Println(v)
}
func main() {
Print(42)
Print("Hello")
Print([]int{1, 2, 3})
}
Рефлексия позволяет программам исследовать и изменять структуру и поведение объектов во время выполнения. Это мощный, но сложный способ написания обобщенного кода.
package main
import (
"fmt"
"reflect"
)
func Print(v interface{}) {
rv := reflect.ValueOf(v)
fmt.Println("Type:", rv.Type(), "Value:", rv)
}
func main() {
Print(42) // Type: int Value: 42
Print("Hello") // Type: string Value: Hello
Print([]int{1, 2, 3}) // Type: []int Value: [1 2 3]
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Контексты (
context.Context
) широко используются для передачи метаданных, управления временем выполнения и отмены операций в многопоточной среде. Пакет context
предоставляет несколько видов контекстов, каждый из которых предназначен для различных сценариев использования. context.Background()
возвращает пустой контекст, который обычно используется как корневой контекст в программах. Он не имеет отмены или дедлайна и не содержит значений.ctx := context.Background()
context.TODO()
также возвращает пустой контекст и используется в случаях, когда еще не ясно, какой контекст следует использовать. Это временный заполнитель, который можно заменить на другой контекст позже.ctx := context.TODO()
context.WithCancel(parent Context)
создает дочерний контекст, который может быть отменен явно вызовом функции отмены (cancel
). Это полезно для контроля выполнения горутин.ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go func() {
// Работа горутины
<-ctx.Done() // Ожидание отмены контекста
fmt.Println("Goroutine canceled")
}()
// Отмена контекста после некоторого времени
time.Sleep(2 * time.Second)
cancel()
context.WithDeadline(parent Context, d time.Time)
создает дочерний контекст, который будет автоматически отменен по истечении заданного времени (дедлайна).deadline := time.Now().Add(5 * time.Second)
ctx, cancel := context.WithDeadline(context.Background(), deadline)
defer cancel()
select {
case <-time.After(6 * time.Second):
fmt.Println("Done")
case <-ctx.Done():
fmt.Println("Context canceled:", ctx.Err())
}
context.WithTimeout(parent Context, timeout time.Duration)
создает дочерний контекст, который будет автоматически отменен через заданное время (таймаут). Это упрощенный вариант WithDeadline
.ctx, cancel := context.WithTimeout(context.Background(), 5 * time.Second)
defer cancel()
select {
case <-time.After(6 * time.Second):
fmt.Println("Done")
case <-ctx.Done():
fmt.Println("Context canceled:", ctx.Err())
}
context.WithValue(parent Context, key, val interface{})
создает дочерний контекст, который несет значение, связанное с заданным ключом. Это полезно для передачи метаданных между функциями.type key string
func main() {
ctx := context.WithValue(context.Background(), key("userID"), 12345)
process(ctx)
}
func process(ctx context.Context) {
if v := ctx.Value(key("userID")); v != nil {
fmt.Println("UserID:", v)
} else {
fmt.Println("UserID not found")
}
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Контекст (
context.Context
) используется для управления временем выполнения, обмена метаданными и отмены операций. Контексты задают таймауты и дедлайны, автоматически отменяя операции по истечении времени.
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second)
defer cancel()
req, err := http.NewRequestWithContext(ctx, http.MethodGet, "https://example.com", nil)
if err != nil {
fmt.Println("Error creating request:", err)
return
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
fmt.Println("Request failed:", err)
return
}
defer resp.Body.Close()
fmt.Println("Response status:", resp.Status)
Контексты позволяют явно отменять операции, что полезно для управления горутинами.
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go func(ctx context.Context) {
for {
select {
case <-ctx.Done():
fmt.Println("Goroutine canceled")
return
default:
fmt.Println("Goroutine working")
time.Sleep(500 * time.Millisecond)
}
}
}(ctx)
time.Sleep(2 * time.Second)
cancel()
time.Sleep(1 * time.Second)
Контексты позволяют передавать метаданные между функциями.
type key string
ctx := context.WithValue(context.Background(), key("userID"), 12345)
process(ctx)
func process(ctx context.Context) {
userID := ctx.Value(key("userID")).(int)
fmt.Println("UserID:", userID)
}
Контексты управляют жизненным циклом запросов, обеспечивая таймауты и отмену при завершении запросов.
func handler(w http.ResponseWriter, r *http.Request) {
ctx := r.Context()
fmt.Println("Handler started")
defer fmt.Println("Handler ended")
select {
case <-time.After(5 * time.Second):
fmt.Fprintln(w, "Request processed")
case <-ctx.Done():
err := ctx.Err()
fmt.Println("Handler error:", err)
http.Error(w, err.Error(), http.StatusInternalServerError)
}
}
http.HandleFunc("/", handler)
http.ListenAndServe(":8080", nil)
Контексты синхронизируют горутины и управляют их завершением.
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
defer cancel()
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
worker(ctx, "Worker 1")
}()
go func() {
defer wg.Done()
worker(ctx, "Worker 2")
}()
wg.Wait()
func worker(ctx context.Context, name string) {
for {
select {
case <-ctx.Done():
fmt.Println(name, "stopped")
return
default:
fmt.Println(name, "working")
time.Sleep(1 * time.Second)
}
}
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Микросервисы и монолиты — это два разных подхода к архитектуре программного обеспечения. Разница между ними заключается в способе организации кода и развертывания приложений.
Монолит — это приложение, в котором весь код собран в один единый блок. Все компоненты системы, включая пользовательский интерфейс, серверную часть, бизнес-логику и базу данных, интегрированы в один крупный исполняемый файл или модуль.
Микросервисы — это подход, при котором приложение разбивается на несколько независимых сервисов. Каждый микросервис отвечает за конкретную бизнес-функцию и взаимодействует с другими сервисами через хорошо определённые интерфейсы (обычно через API).
Представьте приложение для электронной коммерции, где интерфейс, управление пользователями, обработка заказов и управление продуктами — всё это часть одного большого приложения.
В приложении для электронной коммерции можно выделить отдельные микросервисы для управления пользователями, обработки заказов, управления продуктами и т.д. Эти микросервисы взаимодействуют друг с другом через API.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Идущий к IT
Твое резюме на HeadHunter — ОК, если ты видишь это.
HeadHunter сравнивает ключевые навыки в твоем резюме и в вакансии и в момент отклика отображает, насколько % ты соответствуешь требованиям.
Специальный бейджик «Подходит по навыкам на 100%» отображается, если соответствие составляет более 60%.
Если при просмотре вакансий ты видишь такой бейджик, это значит, что список навыков в твоем резюме качественно составлен.
Это важный параметр, так как рекрутерам чаще показываются резюме с лучшим соответствием.
О том, как правильно указывать ключевые навыки и оптимизировать свое резюме я уже рассказывал в этом видео
HeadHunter сравнивает ключевые навыки в твоем резюме и в вакансии и в момент отклика отображает, насколько % ты соответствуешь требованиям.
Специальный бейджик «Подходит по навыкам на 100%» отображается, если соответствие составляет более 60%.
Если при просмотре вакансий ты видишь такой бейджик, это значит, что список навыков в твоем резюме качественно составлен.
Это важный параметр, так как рекрутерам чаще показываются резюме с лучшим соответствием.
О том, как правильно указывать ключевые навыки и оптимизировать свое резюме я уже рассказывал в этом видео