Для преобразования используется утверждение типа (type assertion): value, ok := interfaceValue.(TargetType). Оно проверяет, принадлежит ли значение интерфейса целевому типу.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Слайсы имеют две основные характеристики: длину (len) и емкость (capacity). Понимание этих характеристик важно для эффективного использования слайсов.
Это количество элементов, которые в данный момент находятся в слайсе. Она указывает, сколько элементов доступно для чтения или записи.
package main
import "fmt"
func main() {
slice := []int{1, 2, 3, 4, 5}
fmt.Println("Length:", len(slice)) // Length: 5
}
Это максимальное количество элементов, которые слайс может содержать без выделения дополнительной памяти. Емкость всегда больше или равна длине слайса.
package main
import "fmt"
func main() {
slice := make([]int, 3, 5)
fmt.Println("Length:", len(slice)) // Length: 3
fmt.Println("Capacity:", cap(slice)) // Capacity: 5
}
Определяет текущее количество элементов в слайсе.
Используется для операций чтения и записи.
Определяет максимальное количество элементов, которые могут быть добавлены в слайс без выделения новой памяти.
Емкость может увеличиваться автоматически при добавлении элементов через функцию
append
.Когда вы добавляете элементы в слайс с помощью
append
, если текущей емкости недостаточно, автоматически выделяет новый массив с большей емкостью, копирует существующие элементы в новый массив и добавляет новые элементы.package main
import "fmt"
func main() {
slice := make([]int, 2, 2)
slice[0] = 1
slice[1] = 2
fmt.Println("Before append:", slice, "Len:", len(slice), "Cap:", cap(slice)) // [1 2] Len: 2 Cap: 2
// Добавляем элемент, превышающий текущую емкость
slice = append(slice, 3)
fmt.Println("After append:", slice, "Len:", len(slice), "Cap:", cap(slice)) // [1 2 3] Len: 3 Cap: 4
}
Позволяет задать начальный индекс, конечный индекс и емкость нового слайса.
package main
import "fmt"
func main() {
original := []int{1, 2, 3, 4, 5}
newSlice := original[1:3:4]
fmt.Println("New Slice:", newSlice) // [2 3]
fmt.Println("Length:", len(newSlice)) // 2
fmt.Println("Capacity:", cap(newSlice)) // 3
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
В Go
sync.WaitGroup
используется для синхронизации выполнения горутин. Она позволяет основной горутине (или любой другой горутине) ждать завершения группы горутин перед продолжением работы. Это особенно полезно, когда нужно убедиться, что все фоновые задачи завершены до выполнения дальнейших действий.Увеличивает (или уменьшает) счетчик горутин на заданное значение
delta
.Обычно вызывается до запуска горутин, чтобы установить количество горутин, которые нужно дождаться.
Уменьшает счетчик горутин на 1.
Вызывается горутиной, когда она завершает свою работу.
Блокирует выполнение до тех пор, пока счетчик горутин не станет равен нулю.
Обычно вызывается основной горутиной для ожидания завершения всех горутин.
Мы используем
WaitGroup
для ожидания завершения нескольких горутин.package main
import (
"fmt"
"sync"
"time"
)
func worker(id int, wg *sync.WaitGroup) {
defer wg.Done() // Уменьшает счетчик на 1 при завершении работы горутины
fmt.Printf("Worker %d starting\n", id)
time.Sleep(time.Second)
fmt.Printf("Worker %d done\n", id)
}
func main() {
var wg sync.WaitGroup
for i := 1; i <= 5; i++ {
wg.Add(1) // Увеличивает счетчик горутин на 1
go worker(i, &wg)
}
wg.Wait() // Ожидает завершения всех горутин
fmt.Println("All workers done")
}
worker
.WaitGroup
увеличивается на 1 перед запуском каждой горутины с помощью wg.Add(1)
.wg.Done()
при завершении, уменьшая счетчик на 1.wg.Wait()
, блокируясь до тех пор, пока все горутины не завершат свою работу.Позволяет основной горутине дождаться завершения всех запущенных горутин, что особенно важно для корректного завершения программы или выполнения зависимых задач.
Гарантирует, что основная горутина не завершит выполнение программы до того, как завершатся все горутины, предотвращая возможные дедлоки или незавершенные операции.
Позволяет легко управлять множеством горутин, не требуя сложной логики для отслеживания их завершения.
Без использования
WaitGroup
основной поток может завершиться до завершения всех горутин, что приведет к неполной обработке данных. В этом примере использование time.Sleep
для ожидания является ненадежным и не гарантирует завершение всех горутин. Вместо этого правильное использование WaitGroup
обеспечивает корректное завершение всех задач.package main
import (
"fmt"
"time"
)
func worker(id int) {
fmt.Printf("Worker %d starting\n", id)
time.Sleep(time.Second)
fmt.Printf("Worker %d done\n", id)
}
func main() {
for i := 1; i <= 5; i++ {
go worker(i)
}
time.Sleep(2 * time.Second) // Это не гарантирует завершение всех горутин
fmt.Println("All workers done")
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Это инструменты для анализа исходного кода, которые помогают находить ошибки, несоответствия стилю и потенциальные уязвимости.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Обладает несколькими ключевыми отличиями от Java и Python, что делает его уникальным и подходящим для определенных задач.
Go: Компилируемый язык, компилируется в машинный код, что обеспечивает высокую производительность и быстрое время выполнения.
Java: Компилируется в байт-код, который выполняется на виртуальной машине Java (JVM). Это обеспечивает переносимость, но может добавлять накладные расходы.
Python: Интерпретируемый язык, что делает его менее производительным по сравнению с компилируемыми языками.
Go: Разработан для простоты и читаемости, минимизирует синтаксическую сложность, избегает избыточности.
Java: Сложный и многословный синтаксис, требует больше кода для выполнения тех же задач.
Python: Простой и читаемый синтаксис, который делает его легким для изучения и использования.
Go: Автоматическая сборка мусора, но с управляемыми задержками для обеспечения высокой производительности.
Java: Автоматическая сборка мусора на JVM, что может приводить к задержкам в критических приложениях.
Python: Автоматическая сборка мусора с использованием подсчета ссылок и циклического сборщика мусора.
Go: Встроенная поддержка конкурентности через горутины и каналы, легковесные потоки с низкими накладными расходами.
Java: Многопоточность с использованием потоков, сложное управление потоками и синхронизацией.
Python: Поддержка многопоточности, но ограниченная глобальной блокировкой интерпретатора (GIL), что затрудняет использование многопоточности для параллельных вычислений.
Go: Статически типизированный язык, ошибки типа обнаруживаются на этапе компиляции, что повышает надежность кода.
Java: Статически типизированный язык, что позволяет обнаруживать ошибки типа на этапе компиляции.
Python: Динамически типизированный язык, типы проверяются во время выполнения, что может приводить к ошибкам времени выполнения.
Go: Использует интерфейсы для определения поведения без наследования. Интерфейсы реализуются неявно.
Java: Использует классы и интерфейсы, поддерживает множественное наследование через интерфейсы и одиночное наследование классов.
Python: Поддерживает множественное наследование классов, что может усложнять структуру программы.
Go: Богатая стандартная библиотека с встроенной поддержкой работы с сетью, веб-серверами и другими задачами.
Java: Широкая стандартная библиотека с обширной поддержкой различных API и утилит.
Python: Обширная стандартная библиотека, особенно сильная в области научных вычислений, обработки данных и веб-разработки.
Go: Современные и мощные инструменты для сборки, тестирования и профилирования. Простая система управления зависимостями.
Java: Зрелая экосистема с множеством фреймворков и инструментов (например, Maven, Gradle, Spring).
Python: Обширная экосистема пакетов и библиотек (например, pip, virtualenv, Django).
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
HAVING
— это оператор SQL, который фильтрует результаты после GROUP BY
, аналогично WHERE
, но работает с агрегатными функциями (COUNT()
, SUM()
, AVG()
, MAX()
, MIN()
). WHERE
фильтрует до GROUP BY
(по отдельным строкам). HAVING
фильтрует после GROUP BY
(по сгруппированным данным). Пример 1: Фильтрация по
HAVING
Задача: Вывести товары, у которых продано более 10 единиц.
SELECT product, SUM(quantity) as total_sold
FROM sales
GROUP BY product
HAVING SUM(quantity) > 10;
Пример 2: Разница между
WHERE
и HAVING
SELECT category, COUNT(*) as total_products
FROM products
WHERE price > 100 -- ❌ Убирает дешёвые товары ДО группировки
GROUP BY category
HAVING COUNT(*) > 5; -- ✅ Оставляет только категории с более 5 товаров
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
2. Структуры, если они не содержат слайсов, карт или других несравнимых типов.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
В Go, проверка типа интерфейса может быть выполнена несколькими способами: с помощью утверждения типа (type assertion) и с помощью конструкции
switch
для выбора типа. Утверждение типа позволяет проверить, является ли значение определенного интерфейса конкретным типом. Если да, то оно преобразует интерфейс в этот тип.
value, ok := interfaceValue.(ConcreteType)
value
Значение типа
ConcreteType
, если утверждение типа успешно.ok
Булевое значение, указывающее, удалось ли преобразование.
package main
import "fmt"
func main() {
var i interface{} = "hello"
// Утверждение типа
s, ok := i.(string)
if ok {
fmt.Println("String:", s)
} else {
fmt.Println("Not a string")
}
// Утверждение типа, которое вызовет панику, если тип не соответствует
// Uncomment the line below to see the panic
// s := i.(string)
// fmt.Println(s)
}
Конструкция
switch
позволяет проверить значение интерфейса на соответствие нескольким возможным типам.switch v := interfaceValue.(type) {
case ConcreteType1:
// v имеет тип ConcreteType1
case ConcreteType2:
// v имеет тип ConcreteType2
default:
// v имеет другой тип
}
package main
import "fmt"
func printType(i interface{}) {
switch v := i.(type) {
case string:
fmt.Println("String:", v)
case int:
fmt.Println("Integer:", v)
case bool:
fmt.Println("Boolean:", v)
default:
fmt.Printf("Unknown type: %T\n", v)
}
}
func main() {
printType("hello")
printType(42)
printType(true)
printType(3.14)
}
Пример использования для проверки и работы с интерфейсами
package main
import (
"fmt"
)
type Person struct {
Name string
Age int
}
// Реализация интерфейса fmt.Stringer для типа Person
func (p Person) String() string {
return fmt.Sprintf("%s (%d years old)", p.Name, p.Age)
}
func printValue(i interface{}) {
if str, ok := i.(fmt.Stringer); ok {
fmt.Println("Stringer:", str.String())
} else {
fmt.Println("Not a Stringer")
}
}
func main() {
p := Person{Name: "Alice", Age: 30}
printValue(p) // Проверка типа fmt.Stringer
printValue("Hello, world!") // Строка не реализует fmt.Stringer
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Он работает кооперативно, то есть горутина должна "добровольно" уступить выполнение (например, при channel, sleep, IO).
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Да, между SSL (Secure Sockets Layer) и TLS (Transport Layer Security) есть отличия. TLS является улучшенной и более безопасной версией SSL.
SSL 1.0: Никогда не был выпущен публично из-за серьезных уязвимостей.
SSL 2.0: Выпущен в 1995 году, но вскоре был признан небезопасным из-за множества уязвимостей.
SSL 3.0: Выпущен в 1996 году, значительно улучшил безопасность, но со временем также был признан устаревшим из-за уязвимостей (например, POODLE-атака).
TLS 1.0: Выпущен в 1999 году как обновление SSL 3.0. Включает исправления безопасности и улучшения.
TLS 1.1: Выпущен в 2006 году с дополнительными защитами от некоторых атак.
TLS 1.2: Выпущен в 2008 году, поддерживает современные алгоритмы шифрования и хеширования.
TLS 1.3: Выпущен в 2018 году, значительно улучшена безопасность и производительность, упрощен процесс установки соединения.
SSL: Поддерживает более старые и менее безопасные алгоритмы шифрования.
TLS: Поддерживает более современные и безопасные алгоритмы шифрования. TLS 1.3 исключает поддержку устаревших алгоритмов и предлагает только современные безопасные алгоритмы.
SSL: Более сложный процесс рукопожатия, включающий несколько шагов, что делает его уязвимым для некоторых атак.
TLS: Улучшенный процесс рукопожатия, включая использование HMAC (Hash-based Message Authentication Code) для обеспечения целостности сообщения. TLS 1.3 значительно упрощает и ускоряет процесс рукопожатия.
SSL: Использует комбинацию MD5 и SHA-1 для целостности данных, что не так безопасно по современным стандартам.
TLS: Использует HMAC с SHA-256 и другими современными алгоритмами для обеспечения целостности данных.
SSL: Меньше возможностей для управления сеансами.
TLS: Включает улучшенные механизмы для управления сеансами, такие как возобновление сеансов, что позволяет экономить время и ресурсы при повторных подключениях.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
- Нет классов, используется композиция через структуры и методы.
- Полиморфизм достигается с помощью интерфейсов.
- Наследования нет, встраивание заменяет его.
2. C#:
- Полноценное ООП: классы, наследование, абстракция, интерфейсы.
- Поддержка модификаторов доступа (public, private, protected).
- Разработано для объектно-ориентированной модели с полной поддержкой инкапсуляции и полиморфизма.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Несмотря на свои многие преимущества, такие как простота, скорость и эффективность в работе с многопоточностью, имеет ряд недостатков, которые могут повлиять на выбор языка для конкретных проектов или задач.
До введения дженериков, одним из основных недостатков языка было отсутствие поддержки дженериков, что приводило к тому, что разработчики должны были использовать интерфейсы и тип
interface{}
для создания функций и структур, работающих с различными типами данных. Это могло привести к ухудшению производительности и увеличению сложности кода.Управление памятью осуществляется сборщиком мусора, который, хоть и очень эффективен, может быть непредсказуемым в плане времени выполнения. Это может быть критично для приложений с жёсткими требованиями к времени отклика, таких как высокопроизводительные игры или реалтаймовые системы.
Поскольку типы интерфейсов проверяются во время выполнения, а не во время компиляции, может возникнуть проблема с отладкой ошибок, связанных с типами данных. Кроме того, использование интерфейсов может привести к дополнительным накладным расходам на производительность.
Неизменяемы, что может привести к неэффективному использованию памяти и времени процессора при частой модификации строк, например, в циклах или больших объёмах текстовых данных.
До введения модулей в Go 1.11 управление зависимостями было сложным и могло привести к конфликтам и трудностям в сопровождении кода. Хотя модули значительно улучшили ситуацию, система версионирования и управления зависимостями в Go все еще может быть не такой гибкой, как в некоторых других языках.
Такие ошибки, как работа с нулевыми указателями, остаются довольно распространенными в Go, поскольку язык обладает автоматическим разыменованием указателей, что может привести к панике в рантайме.
Стремится быть простым и эффективным языком, что иногда ведет к отсутствию поддержки некоторых более сложных или специализированных функций, доступных в других языках, таких как метапрограммирование, генерики (до Go 1.18) или тонкая настройка управления памятью.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Это структура данных, которая используется для хранения и поиска пар "ключ-значение". Обеспечивают быстрый доступ к данным по ключу, обычно с константным временем доступа в среднем случае. Основой работы хэш-таблицы является хеш-функция, которая преобразует ключ в индекс, по которому хранится значение.
Функция, которая принимает ключ и преобразует его в индекс массива, называемого "хэш-таблицей". Хорошая хеш-функция распределяет ключи равномерно по хэш-таблице, минимизируя количество коллизий.
Массив фиксированного размера, где каждый элемент называется "корзиной" (bucket). Корзина может содержать одно или несколько значений.
Ситуация, когда два разных ключа хешируются в один и тот же индекс. Коллизии решаются с помощью различных методов, таких как цепочки (chaining) или открытая адресация (open addressing).
Хеш-функция вычисляет индекс для данного ключа. Значение помещается в соответствующую корзину по этому индексу. Если возникает коллизия, используется метод разрешения коллизий.
Хеш-функция вычисляет индекс для ключа. Корзина по этому индексу проверяется на наличие значения. Если значение найдено, оно возвращается; если нет, возвращается индикатор отсутствия значения.
Хеш-функция вычисляет индекс для ключа. Значение удаляется из соответствующей корзины. При необходимости корректируются ссылки или структура данных для разрешения коллизий.
Среднее время доступа к элементу составляет O(1).
Обеспечивает простой интерфейс для вставки, поиска и удаления данных.
Требуют дополнительных механизмов для разрешения, что может усложнить реализацию.
Эффективность хэш-таблицы зависит от качества хеш-функции.
При увеличении количества элементов может потребоваться перераспределение и увеличение размера таблицы, что временно снижает производительность.
package main
import "fmt"
func main() {
// Создание карты
myMap := make(map[string]int)
// Вставка значений
myMap["Alice"] = 25
myMap["Bob"] = 30
// Поиск значений
value, exists := myMap["Alice"]
if exists {
fmt.Println("Alice:", value) // Alice: 25
} else {
fmt.Println("Alice not found")
}
// Удаление значений
delete(myMap, "Alice")
_, exists = myMap["Alice"]
if !exists {
fmt.Println("Alice has been deleted") // Alice has been deleted
}
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from easyoffer
Я боялся, что провалю собеседование. Так появился easyoffer
Когда я только начинал искать первую работу программистом, меня пугала мысль, что я просто не смогу ответить на вопросы на собеседовании.
Типа… ты потратил месяцы на то, чтобы учиться, писал pet-проекты, собирал резюме, рассылаешь отклики — и всё может закончиться на одном-единственном вопросе, на который ты не знаешь ответ.
Я реально боялся.
Я смотрел видео mock-собеседований на YouTube, останавливал каждое, выписывал вопросы в Notion. Потом вручную писал к ним ответы. И потом ещё по нескольку раз перечитывал. Такой вот "тренажёр" на коленке.
📎 (там на картинке — один из моих реальных списков в Notion, ставь 🔥 если тоже так делал)
В какой-то момент я посчитал — у меня уже было выписано больше 500 вопросов. Я почувствовал ужас.
Потому что невозможно всё это зазубрить. А что, если спросят как раз тот, к которому я не успел подготовиться?..
Тогда и пришла идея
А что если понять, какие из вопросов встречаются чаще всего? Чтобы не учить всё подряд, а сфокусироваться на главном.
Так родился easyoffer.
Сначала — просто как пет-проект, чтобы показать в резюме и подготовиться к собесам. А потом оказалось, что он реально помогает людям. За первые месяцы его посетили сотни тысяч человек. И я понял: это больше, чем просто пет-проект.
Сейчас я делаю EasyOffer 2.0
И уже не один, а вместе с вами.
В новой версии будут:
– вопросы из реальных собесов, с фильтрацией по грейду, компании, типу интервью
– тренажёр с карточками (по принципу интервальных повторений — как в Anki)
– база задач с интервью
– тренажёр «реальное собеседование», чтобы отрепетировать как в жизни
Каждая фича упрощает и сокращает время на подготовку. Все эти штуки я бы мечтал иметь, когда сам готовился к собеседованиям.
Я делаю всё на свои деньги. Никаких инвесторов. Только вы и я.
Если вы хотите помочь — сейчас самое важное время.
Краудфандинг уже стартовал. Благодаря нему я смогу привлечь больше людей для разработки, сбору и обработки собеседований.
Все, кто поддержат проект до релиза, получат:
🚀 1 год PRO-доступа по цене месячной подписки. Его можно активировать в любое время, например когда начнете готовится к собесам.
➕ Доступ к закрытому бета-тесту
Поддержать 👉 https://planeta.ru/campaigns/easyoffer
Спасибо, что верите в этот проект 🙌
Когда я только начинал искать первую работу программистом, меня пугала мысль, что я просто не смогу ответить на вопросы на собеседовании.
Типа… ты потратил месяцы на то, чтобы учиться, писал pet-проекты, собирал резюме, рассылаешь отклики — и всё может закончиться на одном-единственном вопросе, на который ты не знаешь ответ.
Я реально боялся.
Я смотрел видео mock-собеседований на YouTube, останавливал каждое, выписывал вопросы в Notion. Потом вручную писал к ним ответы. И потом ещё по нескольку раз перечитывал. Такой вот "тренажёр" на коленке.
📎 (там на картинке — один из моих реальных списков в Notion, ставь 🔥 если тоже так делал)
В какой-то момент я посчитал — у меня уже было выписано больше 500 вопросов. Я почувствовал ужас.
Потому что невозможно всё это зазубрить. А что, если спросят как раз тот, к которому я не успел подготовиться?..
Тогда и пришла идея
А что если понять, какие из вопросов встречаются чаще всего? Чтобы не учить всё подряд, а сфокусироваться на главном.
Так родился easyoffer.
Сначала — просто как пет-проект, чтобы показать в резюме и подготовиться к собесам. А потом оказалось, что он реально помогает людям. За первые месяцы его посетили сотни тысяч человек. И я понял: это больше, чем просто пет-проект.
Сейчас я делаю EasyOffer 2.0
И уже не один, а вместе с вами.
В новой версии будут:
– вопросы из реальных собесов, с фильтрацией по грейду, компании, типу интервью
– тренажёр с карточками (по принципу интервальных повторений — как в Anki)
– база задач с интервью
– тренажёр «реальное собеседование», чтобы отрепетировать как в жизни
Каждая фича упрощает и сокращает время на подготовку. Все эти штуки я бы мечтал иметь, когда сам готовился к собеседованиям.
Я делаю всё на свои деньги. Никаких инвесторов. Только вы и я.
Если вы хотите помочь — сейчас самое важное время.
Краудфандинг уже стартовал. Благодаря нему я смогу привлечь больше людей для разработки, сбору и обработки собеседований.
Все, кто поддержат проект до релиза, получат:
🚀 1 год PRO-доступа по цене месячной подписки. Его можно активировать в любое время, например когда начнете готовится к собесам.
➕ Доступ к закрытому бета-тесту
Поддержать 👉 https://planeta.ru/campaigns/easyoffer
Спасибо, что верите в этот проект 🙌
Это неинициализированный канал (var ch chan int).
- Чтение из nil-канала – блокирует горутину навсегда.
- Запись в nil-канал – блокирует горутину навсегда.
Nil-каналы используются для динамического управления каналами в select, когда временно не нужно обрабатывать канал.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Объектно-ориентированная модель отличается от традиционных ООП-языков, таких как C# или Java. Нет классов и наследования в привычном понимании. Вместо этого используются структуры (structs) и интерфейсы для реализации основных принципов ООП: инкапсуляции, композиции и полиморфизма.
Служат аналогом классов. Они позволяют объединять данные в логически связанные группы.
type Person struct {
Name string
Age int
}
Могут быть определены для структур, что позволяет связывать функции с типами.
func (p Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
Достигается через модификаторы доступа на уровне пакета. Поля и методы, начинающиеся с заглавной буквы, экспортируемые (public), остальные — нет (private).
type Person struct {
name string // неэкспортируемое поле
Age int // экспортируемое поле
}
Go не поддерживает классическое наследование. Вместо этого используется композиция для включения функциональности одного типа в другой.
type Employee struct {
Person
Position string
}
Используются для определения поведения. Типы могут реализовывать интерфейсы неявно, просто предоставляя методы, указанные в интерфейсе.
type Greeter interface {
Greet()
}
func SayHello(g Greeter) {
g.Greet()
}
type Person struct {
Name string
}
func (p Person) Greet() {
fmt.Printf("Hello, my name is %s\n", p.Name)
}
func main() {
p := Person{Name: "John"}
SayHello(p)
}
Достигается через интерфейсы. Любой тип, который реализует интерфейс, может быть использован вместо него.
type Greeter interface {
Greet()
}
func SayHello(g Greeter) {
g.Greet()
}
type Robot struct {
ID string
}
func (r Robot) Greet() {
fmt.Printf("Greetings, I am robot %s\n", r.ID)
}
func main() {
p := Person{Name: "John"}
r := Robot{ID: "XJ-9"}
SayHello(p)
SayHello(r)
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM