📊 Шпаргалка для машинного обучения: 10 алгоритмов и их временная сложность — всегда под рукой.
🐸 Библиотека дата-сайентиста
#буст
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍3
This media is not supported in your browser
VIEW IN TELEGRAM
📅 Сегодня в 19:00 МСК — бесплатный вебинар с Марией Жаровой.
Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».
🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.
Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.
👉 Регистрируйтесь
Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».
🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.
Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.
👉 Регистрируйтесь
❤1🔥1
🚕 Как лог-трансформация спасла модель
Наш подписчик поделился лайфхаком, который снизил ошибку модели на 20% всего одной строкой кода.
В задаче регрессии (например, предсказание стоимости поездок Uber) оказалось, что таргет (fare) сильно скошен вправо: много маленьких значений + редкие, но вполне реальные высокие цены.
❌ Модели сложно учиться: редкие большие значения «тянут» распределение и портят общую картину.
➖ Простое решение — применить log1p к целевой переменной:
— большие значения сжимаются;
— малые почти не меняются;
— распределение становится ближе к нормальному;
— влияние «хвоста» снижается.
Схема:
💡 Результат: MAE снизился на 20%.
Не магия, а классика — но про этот приём часто забывают. Если таргет имеет длинный правый хвост → лог-трансформация может резко улучшить качество.
🐸 Библиотека дата-сайентиста
#междусобойчик
Наш подписчик поделился лайфхаком, который снизил ошибку модели на 20% всего одной строкой кода.
В задаче регрессии (например, предсказание стоимости поездок Uber) оказалось, что таргет (fare) сильно скошен вправо: много маленьких значений + редкие, но вполне реальные высокие цены.
— большие значения сжимаются;
— малые почти не меняются;
— распределение становится ближе к нормальному;
— влияние «хвоста» снижается.
Схема:
y → log1p → модель → предсказания (log scale) → expm1 → предсказания (ориг. масштаб)
💡 Результат: MAE снизился на 20%.
Не магия, а классика — но про этот приём часто забывают. Если таргет имеет длинный правый хвост → лог-трансформация может резко улучшить качество.
#междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤5
Он уже собрал 60K⭐️ на GitHub и не зря: учит строить и тренировать LLM с нуля. Никакой воды — только практические навыки, которые нужны каждому будущему AI-инженеру.
Что в репозитории:
— Как LLM на самом деле работают
— Основы работы с текстовыми данными
— Реализация attention и GPT с нуля
— Предобучение на неразмеченных данных
— Финетюнинг для классификации и инструкций
— Основы CUDA и PyTorch, пошаговые видео, куча практики.
Для новичков и тех, кто хочет поднять уровень — этот репозиторий реально меняет правила игры.
📌 Репозиторий на GitHub
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2🥰2