Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
18.7K subscribers
2.25K photos
113 videos
64 files
4.66K links
Все самое полезное для дата сайентиста в одном канале.

По рекламе: @proglib_adv

Курс по ML: https://clc.to/4hNluQ

Для обратной связи: @proglibrary_feeedback_bot

РКН: https://gosuslugi.ru/snet/67a5b03124c8ba6dcaa121c9
Download Telegram
📊 Шпаргалка для машинного обучения: 10 алгоритмов и их временная сложность — всегда под рукой.

🐸 Библиотека дата-сайентиста

#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍3
This media is not supported in your browser
VIEW IN TELEGRAM
📅 Сегодня в 19:00 МСК — бесплатный вебинар с Марией Жаровой.

Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».

🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.

Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.

👉 Регистрируйтесь
1🔥1
🚕 Как лог-трансформация спасла модель

Наш подписчик поделился лайфхаком, который снизил ошибку модели на 20% всего одной строкой кода.

В задаче регрессии (например, предсказание стоимости поездок Uber) оказалось, что таргет (fare) сильно скошен вправо: много маленьких значений + редкие, но вполне реальные высокие цены.

Модели сложно учиться: редкие большие значения «тянут» распределение и портят общую картину.

Простое решение — применить log1p к целевой переменной:
— большие значения сжимаются;
— малые почти не меняются;
— распределение становится ближе к нормальному;
— влияние «хвоста» снижается.

Схема:
y → log1p → модель → предсказания (log scale) → expm1 → предсказания (ориг. масштаб)


💡 Результат: MAE снизился на 20%.

Не магия, а классика — но про этот приём часто забывают. Если таргет имеет длинный правый хвост → лог-трансформация может резко улучшить качество.

🐸 Библиотека дата-сайентиста

#междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85
👆 Хочешь стать AI-инженером? Этот репозиторий — настоящая находка

Он уже собрал 60K⭐️ на GitHub и не зря: учит строить и тренировать LLM с нуля. Никакой воды — только практические навыки, которые нужны каждому будущему AI-инженеру.

Что в репозитории:
Как LLM на самом деле работают
Основы работы с текстовыми данными
Реализация attention и GPT с нуля
Предобучение на неразмеченных данных
Финетюнинг для классификации и инструкций
Основы CUDA и PyTorch, пошаговые видео, куча практики.

Для новичков и тех, кто хочет поднять уровень — этот репозиторий реально меняет правила игры.

📌 Репозиторий на GitHub

🐸 Библиотека дата-сайентиста

#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2🥰2