Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
19K subscribers
2.04K photos
109 videos
64 files
4.46K links
Все самое полезное для дата сайентиста в одном канале.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/f83f07f1

Для обратной связи: @proglibrary_feeedback_bot

РКН: https://gosuslugi.ru/snet/67a5b03124c8ba6dcaa121c9
Download Telegram
🔍 ML после релиза: почему модель может сломаться — и как это вовремя заметить

Внедрили модель, подтвердили гипотезу, получили эффект — работа сделана? Увы, нет.

После деплоя начинается настоящее испытание:
— данные меняются,
— поведение пользователей эволюционирует,
— а ваша модель может незаметно терять эффективность.

📌 Must-read для тех, кто работает с ML в продакшене и хочет, чтобы решения были устойчивыми, а не разовыми.

👉 Читайте, делитесь и не забывайте наблюдать за своими моделями: https://proglib.io/sh/fjpFLVWn8Z

Библиотека дата-сайентиста
📌 Промт дня: анализ важности признаков после обучения модели

После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.

Это помогает:
— интерпретировать модель,
— упростить её (feature selection),
— обнаружить «лишние» или дублирующие признаки.

Промт:
Проанализируй важность признаков обученной модели. Выполни следующие шаги:

— Извлеки и отсортируй признаки по степени важности.
— Построй barplot с топ-10 признаками.
— Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить.
— Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию.
— Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?


Рекомендованные инструменты:
model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM
eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации
seaborn.barplot, matplotlib — для наглядных графиков

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
😱 Вся правда об увольнениях в IT в 2025-м

Пока все молчат о том, что происходит на рынке, мы решили выяснить реальную картину. Без прикрас и корпоративного пиара.

Но для этого нам нужна ваша помощь! Мы собираем данные от разработчиков, тестировщиков, менеджеров и всех, кто работает в ИТ, чтобы создать честное исследование о:

— реальных причинах массовых увольнений
— судьбе тех, кто остался за бортом IT-рынка
— том, сколько времени сейчас нужно на поиск работы

Почему это важно? Потому что сила в правде. Зная реальную ситуацию, вы сможете лучше понимать тренды рынка и планировать карьеру.

⚡️Пройдите опрос и помогите всему сообществу: https://clc.to/yJ5krg
🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:
import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👾 AI-агенты — настоящее, о котором все говорят

На днях мы анонсировали наш новый курс AI-агенты для DS-специалистов 🎉

Это продвинутая программа для тех, кто хочет получить прикладной опыт с LLM и решать сложные задачи!

На обучении вы соберете полноценные LLM-системы с учётом особенностей доменных областей, получите hands-on навыки RAG, Crew-AI / Autogen / LangGraph и агентов.

🎓 В рамках курса вы научитесь:
— адаптировать LLM под разные предметные области и данные
— собирать свою RAG-систему: от ретривера и реранкера до генератора и оценки качества
— строить AI-агентов с нуля — на основе сценариев, функций и взаимодействия с внешней средой

Разберете реальные кейсы и научитесь применять похожие подходы в разных доменных областях, получите фундамент для уверенного прохождения NLP system design интервью и перехода на следующий грейд.

Старт 5 июля, а при оплате до 1 июня действует дополнительная скидка и бонус — эксклюзивный лонгрид по API и ML от Proglib.

Начните осваивать тему уже сейчас 👉 https://clc.to/Cttu7A
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение pinned «👾 AI-агенты — настоящее, о котором все говорят На днях мы анонсировали наш новый курс AI-агенты для DS-специалистов 🎉 Это продвинутая программа для тех, кто хочет получить прикладной опыт с LLM и решать сложные задачи! На обучении вы соберете полноценные…»
This media is not supported in your browser
VIEW IN TELEGRAM
🧩 Фишка: 8 типов AI-моделей, которые стоит знать

Не весь искусственный интеллект — это ChatGPT.
Сегодня в ИИ-экосистеме используются разные архитектуры, и каждая заточена под конкретный тип задач.

Вот ключевые типы моделей и для чего они подходят:

🔎 «LLM» — Large Language Models
Большие языковые модели.
🟡 Что делают: генерируют текст, отвечают на вопросы, пишут статьи, резюмируют.
Примеры: GPT-4, Claude, Gemini, LLaMA.

🔎 «LCM» — Latent Concept Models
Модели скрытых концептов.
🟡 Что делают: находят глубокие зависимости и «смыслы» в данных, которые не видны напрямую.
Применение: интерпретация решений моделей, выявление причин/паттернов в данных (например, в медицине или финансах).

🔎 «LAM» — Language Action Models
Модели языка и действий.
🟡 Что делают: понимают инструкции на естественном языке и сразу выполняют действия (например, бронируют, пересылают, настраивают).
Применение: агенты, автоматизация процессов, управление интерфейсами.

🔎 «MoE» — Mixture of Experts
Модель со множеством «экспертов» внутри.
🟡 Что делают: на каждый запрос активируют только нужную часть модели — эффективнее и быстрее.
Применение: масштабируемые модели без потери качества. Используется в Gemini и Switch Transformer.

🔎 «VLM» — Vision-Language Models
Мультимодальные модели (изображения + текст).
🟡 Что делают: интерпретируют визуальную информацию вместе с текстовой.
Примеры: GPT-4V, Gemini, Kosmos, LLaVA.
Задачи: подписи к изображениям, визуальный поиск, анализ UI, документация.

🔎 «SLM» — Small Language Models
Компактные языковые модели.
🟡 Что делают: быстрее, легче, дешевле. Жертвуют масштабом ради скорости и автономности.
Примеры: Mistral 7B, Phi-2, TinyLLaMA.
Используются в мобильных, edge- и офлайн-устройствах.

🔎 «MLM» — Masked Language Models
Обучение на «пропусках» (масках).
🟡 Что делают: предсказывают скрытые слова → улучшают понимание контекста.
Примеры: BERT, RoBERTa.
Идеальны для классификации, поиска, исправления текста.

🔎 «SAM» — Segment Anything Model
Модель «укажи — и вырежу».
🟡 Что делает: сегментирует любой объект на изображении по клику.
Пример: SAM от Meta.
Применение: дизайн, медицина, роботика, редактирование изображений.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
🧱 От модели к продукту: инженерная сторона ML в продакшене

Многие думают, что ML = модель.
На деле — модель = лишь 5–10% всей ML-системы.

📍 Как обрабатывать фичи в real-time?
📍 Как хранить версии данных и моделей?
📍 Где тонко рвётся пайплайн в проде?
📍 Что нужно для стабильного inference на высоких нагрузках?

Мы разобрали:
— основные компоненты бэкенда для ML-систем
— типовые архитектурные схемы
— частые ошибки в продакшене
— лучшие практики из MLOps и data engineering

📖 Читайте статью:
«Бэкенд под ML-проекты: особенности архитектуры и типичные узкие места»
https://proglib.io/sh/xCfXt2pH4j

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
Последние 2 дня скидки на курс «AI-агенты для DS-специалистов»

Пока большинство дата-сайентистов строят модели и делают аналитику, рынок уже требует специалистов, которые создают автономные системы на базе ИИ-агентов.

Для этого мы подготовили специальный курс и собрали кучу дополнительного контента, который поможет погрузиться в тему еще глубже. Но чтобы получить все плюшки, успевайте до 1 июня.

🎁 Что вы получите при оплате курса до 1 июня:
— Промокод PROGLIBAIна 10 000 ₽ на курс, чтобы изучать AI-агентов еще выгоднее
— Эксклюзивный лонгрид по API и ML от Proglib

💡Что разберем на курсе «AI-агенты для DS-специалистов»:
— Реализацию памяти в цепочках langchain
— Полный пайплайн RAG-системы с оценкой качества
— Основы мультиагентных систем (MAS)
— Протокол MCP и фреймворк FastMCP

Промокод также действует на курсы «Математика для Data Science» и «Алгоритмы и структуры данных».

👉 Успейте до 1 июня: https://clc.to/Cttu7A
🧠 Загадка для AI/DS-гиков

🤓 Давайте проверим вашу интуицию и знание терминов.

Подсказка: термин связан с искусственным интеллектом или data science.

Самые догадливые — пишите ответ в комментариях 👇
Не забудьте спрятать его под спойлер, чтобы не подсказывать другим.

Библиотека дата-сайентиста #междусобойчик
🚨 Что на самом деле происходит с увольнениями в ИТ

Каждый день в чатах разработчиков появляются сообщения «ищу работу», «команду сократили», «проект закрыли». Но никто не говорит о причинах и масштабах катастрофы. Мы запустили большое исследование, чтобы раскрыть правду!

🎯 Что мы выясним:
→ Реальные причины увольнений
→ Сколько времени нужно на поиск работы
→ Самые безумные истории смены работы

Понимая реальную ситуацию, мы сможем принимать взвешенные решения о карьере и не попасться на удочку HR-сказок.

👉 Пройдите опрос за 3 минуты и помогите всему сообществу: https://clc.to/yJ5krg
✈️ Свежие новости из мира AI и Data Science

🔥 Модели, релизы и технологии:
BAGEL от ByteDance — мультимодальная open-source модель: текст, изображение и всё вместе
Mistral Agents API — новый API для сборки AI-агентов: просто, мощно, гибко
FlowTSE — извлекает голос нужного спикера из шумной записи с несколькими говорящими

🧠 Статьи, исследования и лучшие практики:
Мэтчинг по-научному — алгоритм подбора работодателей и кандидатов от Авито
Python и древние фрески — цифровая реставрация с помощью ML
Новая маршрутизация от Яндекса — алгоритмы для пешеходов и велосипедистов
Редактор от Сбера — точечное редактирование изображений словами

📘 Обучение и развитие:
Установка драйверов NVIDIA — полезная шпаргалка для ML-серверов
CV/ML-проект с нуля до продакшена — практическое руководство
Yambda от Яндекса — крупнейший датасет для развития рекомендательных систем

Библиотека дата-сайентиста #свежак
Please open Telegram to view this post
VIEW IN TELEGRAM