Как предотвратить застревание градиентного спуска в локальных минимумах?
✔️Использование техник инициализации (например, Xavier / Glorot). Помогает установить подходящие начальные веса для процесса оптимизации.
✔️Использование оптимизаторов типа Adam или RMSProp, которые адаптируют скорость обучения для отдельных параметров.
✔️Введение случайности в процесс оптимизации, благодаря применению мини-батчей. Это помогает алгоритму выйти из локальных минимумов, добавляя шум к оценкам градиента.
✔️Добавление большего количества слоёв или нейронов.
✔️Подбор гиперпараметров с использованием методов случайного поиска и grid search.
#junior
#middle
✔️Использование техник инициализации (например, Xavier / Glorot). Помогает установить подходящие начальные веса для процесса оптимизации.
✔️Использование оптимизаторов типа Adam или RMSProp, которые адаптируют скорость обучения для отдельных параметров.
✔️Введение случайности в процесс оптимизации, благодаря применению мини-батчей. Это помогает алгоритму выйти из локальных минимумов, добавляя шум к оценкам градиента.
✔️Добавление большего количества слоёв или нейронов.
✔️Подбор гиперпараметров с использованием методов случайного поиска и grid search.
#junior
#middle
👍11❤1
В чём заключается разница между генеративными и дискриминативными моделями?
Генеративные модели фокусируются на создании новых образцов данных, а дискриминативные модели — на задачах классификации и прогнозирования на базе входных данных.
❤️ Генеративные модели
Их цель — моделировать совместное распределение вероятностей P(X, Y) входных данных X и целевой переменной Y. Они часто используется для задач, связанных с генерацией изображений и текста. Примеры: вариационные автоэнкодеры (VAE), генеративно-состязательные сети (GAN).
❤️ Дискриминативные модели
Их цель — моделировать условное распределение вероятностей P(Y | X) целевой переменной Y при заданном входе X. Используются для классификации или прогнозирования на основе входных данных. Примеры: логистическая регрессия, свёрточные нейронные сети (CNN) для классификации изображений.
#junior
#middle
Генеративные модели фокусируются на создании новых образцов данных, а дискриминативные модели — на задачах классификации и прогнозирования на базе входных данных.
❤️ Генеративные модели
Их цель — моделировать совместное распределение вероятностей P(X, Y) входных данных X и целевой переменной Y. Они часто используется для задач, связанных с генерацией изображений и текста. Примеры: вариационные автоэнкодеры (VAE), генеративно-состязательные сети (GAN).
❤️ Дискриминативные модели
Их цель — моделировать условное распределение вероятностей P(Y | X) целевой переменной Y при заданном входе X. Используются для классификации или прогнозирования на основе входных данных. Примеры: логистическая регрессия, свёрточные нейронные сети (CNN) для классификации изображений.
#junior
#middle
❤7👍2
Что вы знаете про использование марковских цепей в анализе последовательностей?
Марковские цепи используются в анализе последовательностей данных, таких как временные ряды и текст. Основная идея марковских цепей заключается в предположении, что будущее состояние системы зависит только от её текущего состояния, а не от всей истории предыдущих состояний. Это известно как свойство Маркова или отсутствие памяти. В контексте последовательностей это означает, что следующий элемент в последовательности зависит только от текущего элемента.
Также применяются скрытые Марковские модели. Они представляют из себя марковские цепи, для которых нам известны начальная вероятность и матрица вероятностей переходов. Скрытыми модели называется потому, что мы не имеем информации о текущем состоянии в них.
✔️Скрытые Марковские модели используются, например, для моделирования фонем и слов в системах распознавания речи. Также Марковские модели применимы в моделировании временных рядов финансовых данных, таких как цены на акции.
#middle
Марковские цепи используются в анализе последовательностей данных, таких как временные ряды и текст. Основная идея марковских цепей заключается в предположении, что будущее состояние системы зависит только от её текущего состояния, а не от всей истории предыдущих состояний. Это известно как свойство Маркова или отсутствие памяти. В контексте последовательностей это означает, что следующий элемент в последовательности зависит только от текущего элемента.
Также применяются скрытые Марковские модели. Они представляют из себя марковские цепи, для которых нам известны начальная вероятность и матрица вероятностей переходов. Скрытыми модели называется потому, что мы не имеем информации о текущем состоянии в них.
✔️Скрытые Марковские модели используются, например, для моделирования фонем и слов в системах распознавания речи. Также Марковские модели применимы в моделировании временных рядов финансовых данных, таких как цены на акции.
#middle
👍9❤1
Что за алгоритм DBSCAN и как его использовать?
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) — это алгоритм кластеризации данных. В его основе лежит понятие плотности; кластеры определяются как области высокой плотности, разделённые областями низкой плотности.
✔️Для использования DBSCAN нужно определить два ключевых параметра: eps (радиус поиска соседей для каждой точки) и min_samples (минимальное количество точек, необходимое для формирования плотного региона). Алгоритм находит некоторую центральную точку кластера. Таковой она считается, если содержит более min_samples в радиусе eps. После того как центральная точка кластера определена, алгоритм включает в список обхода все доступные для неё точки в пределах eps. Процесс повторяется. По сути, алгоритм пытается расширить кластер. Если точка не достигает порога min_samples, она помечается как шум.
DBSCAN эффективен для данных с кластерами неправильной формы и хорошо справляется с выбросами.
#junior
#middle
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) — это алгоритм кластеризации данных. В его основе лежит понятие плотности; кластеры определяются как области высокой плотности, разделённые областями низкой плотности.
✔️Для использования DBSCAN нужно определить два ключевых параметра: eps (радиус поиска соседей для каждой точки) и min_samples (минимальное количество точек, необходимое для формирования плотного региона). Алгоритм находит некоторую центральную точку кластера. Таковой она считается, если содержит более min_samples в радиусе eps. После того как центральная точка кластера определена, алгоритм включает в список обхода все доступные для неё точки в пределах eps. Процесс повторяется. По сути, алгоритм пытается расширить кластер. Если точка не достигает порога min_samples, она помечается как шум.
DBSCAN эффективен для данных с кластерами неправильной формы и хорошо справляется с выбросами.
#junior
#middle
🔥10❤2💯2🥰1