Библиотека собеса по Data Science | вопросы с собеседований
4.3K subscribers
447 photos
12 videos
1 file
477 links
Вопросы с собеседований по Data Science и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/7dfb7235

Для обратной связи: @proglibrary_feeedback_bot

Наши каналы: https://t.me/proglibrary/9197
Download Telegram
Что такое метрика BLEU?

Метрика BLEU (Bilingual Evaluation Understudy) — это один из методов оценки качества машинного перевода. Основная идея BLEU заключается в сравнении переведённого моделью текста с эталонными переводами, выполненными человеком.

Оценки вычисляются для отдельных переведённых сегментов текста, чаще всего предложений. Затем эти оценки усредняются по всему тексту, чтобы получить оценку общего качества перевода.

Алгоритм, если коротко, такой: для каждой длины n-граммы (от 1 до 4) подсчитывается точность. Точность — это отношение количества совпавших с эталонными n-грамм в машинном переводе к общему количеству n-грамм в этом переводе. Затем эти точности комбинируются. Есть также штраф за краткость. Более подробно можно прочесть здесь.

#middle
🔥5
Какие проблемы есть у рекуррентных нейронных сетей (RNN)?

RNN — это нейронные сети для работы с последовательностями (текстами, временными рядами). Они имеют механизм для запоминания предыдущих входных данных. Тем не менее они подвержены некоторым проблемам:

▪️Взрывающийся градиент.
Это ситуация, при которой градиент экспоненциально растёт вплоть до полной потери стабильности RNN. Если градиент становится бесконечно большим, нейросеть проявляет проблемы с производительностью.
▪️Исчезающий градиент.
Это ситуация, обратная предыдущей. В этом состоянии градиент приближается к нулю, что приводит к потере RNN способности эффективно обучаться по предложенным данным. Для рекуррентных нейронных сетей характерен высокий риск исчезающего или взрывающегося градиента при обработке длинных последовательностей данных.
▪️Медленное обучение.
В целом, для RNN требуются огромные вычислительные мощности, большой объём памяти и много времени, если речь идёт о значительном количестве текстов.

#junior
#middle
👍4
В чём разница между косинусным сходством и косинусным расстоянием?

▫️Косинусное сходство (или близость)
Измеряет косинус угла между двумя векторами в пространстве. Это мера того, насколько вектора «похожи» друг на друга. Значение косинусного сходства варьируется от -1 до 1, где -1 означает, что вектора абсолютно непохожи, 0 — что нет корреляции, 1 — что похожи.
▫️Косинусное расстояние
Измеряет степень различия между двумя векторами. Рассчитывается по формуле едицина минус косинусное сходство. Значение варьируется от 0 до 2. 0 означает полное сходство, а 2 — полную противоположность.

#middle
👍171
Как предотвратить застревание градиентного спуска в локальных минимумах?

✔️Использование техник инициализации (например, Xavier / Glorot). Помогает установить подходящие начальные веса для процесса оптимизации.
✔️Использование оптимизаторов типа Adam или RMSProp, которые адаптируют скорость обучения для отдельных параметров.
✔️Введение случайности в процесс оптимизации, благодаря применению мини-батчей. Это помогает алгоритму выйти из локальных минимумов, добавляя шум к оценкам градиента.
✔️Добавление большего количества слоёв или нейронов.
✔️Подбор гиперпараметров с использованием методов случайного поиска и grid search.

#junior
#middle
👍111
В чём заключается разница между генеративными и дискриминативными моделями?

Генеративные модели фокусируются на создании новых образцов данных, а дискриминативные модели — на задачах классификации и прогнозирования на базе входных данных.


❤️ Генеративные модели

Их цель — моделировать совместное распределение вероятностей P(X, Y) входных данных X и целевой переменной Y. Они часто используется для задач, связанных с генерацией изображений и текста. Примеры: вариационные автоэнкодеры (VAE), генеративно-состязательные сети (GAN).

❤️ Дискриминативные модели

Их цель — моделировать условное распределение вероятностей P(Y | X) целевой переменной Y при заданном входе X. Используются для классификации или прогнозирования на основе входных данных. Примеры: логистическая регрессия, свёрточные нейронные сети (CNN) для классификации изображений.


#junior
#middle
7👍2
Что вы знаете про использование марковских цепей в анализе последовательностей?

Марковские цепи используются в анализе последовательностей данных, таких как временные ряды и текст. Основная идея марковских цепей заключается в предположении, что будущее состояние системы зависит только от её текущего состояния, а не от всей истории предыдущих состояний. Это известно как свойство Маркова или отсутствие памяти. В контексте последовательностей это означает, что следующий элемент в последовательности зависит только от текущего элемента.

Также применяются скрытые Марковские модели. Они представляют из себя марковские цепи, для которых нам известны начальная вероятность и матрица вероятностей переходов. Скрытыми модели называется потому, что мы не имеем информации о текущем состоянии в них.

✔️Скрытые Марковские модели используются, например, для моделирования фонем и слов в системах распознавания речи. Также Марковские модели применимы в моделировании временных рядов финансовых данных, таких как цены на акции.

#middle
👍91
Что за алгоритм DBSCAN и как его использовать?

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) — это алгоритм кластеризации данных. В его основе лежит понятие плотности; кластеры определяются как области высокой плотности, разделённые областями низкой плотности.

✔️Для использования DBSCAN нужно определить два ключевых параметра: eps (радиус поиска соседей для каждой точки) и min_samples (минимальное количество точек, необходимое для формирования плотного региона). Алгоритм находит некоторую центральную точку кластера. Таковой она считается, если содержит более min_samples в радиусе eps. После того как центральная точка кластера определена, алгоритм включает в список обхода все доступные для неё точки в пределах eps. Процесс повторяется. По сути, алгоритм пытается расширить кластер. Если точка не достигает порога min_samples, она помечается как шум.

DBSCAN эффективен для данных с кластерами неправильной формы и хорошо справляется с выбросами.

#junior
#middle
🔥102💯2🥰1