🧠 Курс «Математика для Data Science»
Математика лежит под капотом не только алгоритмов, но и всего, что мы создаём — от систем рекомендаций до маршрутизации такси.
Но главное, математика понятна, если объяснить её на языке разработки.
📘 Курс «Математика для Data Science»:
— от основ до реальных задач из собесов;
— линейная алгебра, статистика, теория вероятностей;
— визуализации, практика и живые уроки;
— поддержка менторов и комьюнити в чате.
⚡ Сегодня последний день, чтобы получить подарок: курс по базовой математике!
🗓️ Старт курса → 6 ноября
👉 Записаться на курс
Математика лежит под капотом не только алгоритмов, но и всего, что мы создаём — от систем рекомендаций до маршрутизации такси.
Но главное, математика понятна, если объяснить её на языке разработки.
📘 Курс «Математика для Data Science»:
— от основ до реальных задач из собесов;
— линейная алгебра, статистика, теория вероятностей;
— визуализации, практика и живые уроки;
— поддержка менторов и комьюнити в чате.
⚡ Сегодня последний день, чтобы получить подарок: курс по базовой математике!
🗓️ Старт курса → 6 ноября
👉 Записаться на курс
Глубокие нейронные сети способны учиться представлениям входных данных, которые уменьшают избыточность коррелированных признаков. Например, первые слои могут автоматически комбинировать сильно коррелированные признаки в более независимые внутренние представления.
Однако корреляция всё равно влияет на несколько аспектов:
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Adam объединяет идеи из предыдущих оптимизаторов:
💡 Чтобы глубже понимать, как работают оптимизаторы и почему математика так важна в ML, посмотри курс Математика для Data Science — сейчас на него действует скидка –40%.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Частота переобучения зависит от скорости изменения данных, степени выявленного дрейфа и затрат на повторное обучение.
В быстро меняющихся областях (например, обнаружение мошенничества в реальном времени) модели могут обновляться ежедневно или еженедельно. В стабильных доменах достаточно квартального или даже более редкого обновления.
Такой подход сочетает реактивные меры (переобучение при ухудшении производительности) и проактивные меры (периодическое обновление модели для учёта новых данных).
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
🔎 Собес сам себя не пройдет
Ты готов к собеседованию? А если проверю?
Залетай к нам и забирай курсы со скидкой 40%. Только до конца октября можно узнать много нового и отточить навыки.
🎯 Забирай курсы:
🐍 python для разработчиков;
🧮 алгоритмы и структуры данных;
📝 архитектуры и шаблоны проектирования;
🧩 основы IT для новичков.
⚡️ Не упусти скидку и получи долгожданный оффер!
Ты готов к собеседованию? А если проверю?
Залетай к нам и забирай курсы со скидкой 40%. Только до конца октября можно узнать много нового и отточить навыки.
🎯 Забирай курсы:
🐍 python для разработчиков;
🧮 алгоритмы и структуры данных;
📝 архитектуры и шаблоны проектирования;
🧩 основы IT для новичков.
⚡️ Не упусти скидку и получи долгожданный оффер!
Да, подходы к калибровке отличаются в зависимости от типа модели.
Для непараметрических моделей (например, k-NN) вероятность часто аппроксимируется долей соседей каждого класса среди ближайших k точек. Такая оценка может быть шумной, особенно в высокоразмерных или разреженных данных. Для улучшения калибровки применяют изотоническую регрессию или другие постобработки, которые отображают эти частотные оценки в более гладкие вероятности.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2