Библиотека собеса по Data Science | вопросы с собеседований
4.31K subscribers
441 photos
10 videos
1 file
456 links
Вопросы с собеседований по Data Science и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/7dfb7235

Для обратной связи: @proglibrary_feeedback_bot

Наши каналы: https://t.me/proglibrary/9197
Download Telegram
Как можно встроить экспертные знания о задаче в Bayesian-подход к тюнингу гиперпараметров

В Bayesian optimization доменные знания можно внедрить через задание информативных априорных распределений и стартовых точек:

🟠 Ограничение диапазонов — если известно, что в вашей области обучения эффективные learning rate находятся в узком интервале, априор можно задать не равномерным, а суженным (например, log-uniform в пределах, где вы ожидаете хорошие результаты).

🟠 Warm-start — добавить в начальный набор экспериментов уже успешные конфигурации, чтобы модель-заместитель сразу получила полезную информацию о ландшафте гиперпараметров.

🟠 Специализированная модель-заместитель — вместо стандартного Gaussian Process использовать модель, отражающую корреляции между гиперпараметрами (например, объединяя родственные типы регуляризации в иерархию).

💡 Подводный камень: чрезмерно «узкие» или слишком уверенные априоры могут зафиксировать поиск в локальном оптимуме. Даже с сильными предположениями полезно сохранять некоторую степень случайного исследования пространства.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3