❗ Первый вебинар нашего курса по AI-агентам уже прошёл!
Запись уже выложили на обучающей платформе — можно влетать и догонять с комфортом.
Первые слушатели уже оставили фидбэки — и, кажется, мы попали в точку:
— «теперь наконец понял, как выбирать модели под задачу — раньше брал первую попавшуюся»
— «без лишнего, по делу, в лайве — кайф»
— «огонь, ожидания 100% оправданы лично у меня»
Если хотели вписаться, но сомневались — ещё не поздно. Вебинары идут вживую, записи сохраняются, чат работает, материалы открыты.
⏳ Ещё можно догнать и пройти всё вместе с потоком.
👉 Залетай на курс
Запись уже выложили на обучающей платформе — можно влетать и догонять с комфортом.
Первые слушатели уже оставили фидбэки — и, кажется, мы попали в точку:
— «теперь наконец понял, как выбирать модели под задачу — раньше брал первую попавшуюся»
— «без лишнего, по делу, в лайве — кайф»
— «огонь, ожидания 100% оправданы лично у меня»
Если хотели вписаться, но сомневались — ещё не поздно. Вебинары идут вживую, записи сохраняются, чат работает, материалы открыты.
⏳ Ещё можно догнать и пройти всё вместе с потоком.
👉 Залетай на курс
Иногда полезно предсказать
Примеры:
Иногда модель классификации может быть
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤1🔥1
Синтетические данные могут показаться искусственными, но в некоторых ситуациях они становятся незаменимым инструментом, особенно когда:
Важно:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1
🤔 Почему иногда стоит использовать заведомо переобученную модель, несмотря на риски
На первый взгляд, переобучение — это зло. Но в некоторых ситуациях сознательное переобучение может быть оправдано, если:
✅ Качество важнее обобщения. Например, если модель работает только на строго ограниченном наборе данных (внутри одной компании, устройства, клиента), и обобщение на внешний мир не требуется.
✅ Переобученная модель используется как слабый компонент в ансамбле. Boosting часто строит переобученные деревья, которые в совокупности дают устойчивую модель.
✅ Нужно вытянуть максимум информации из сложных и «богатых» данных. Иногда регуляризация отрезает важные высокоуровневые зависимости. Переобученная модель может их уловить — главное, вовремя остановиться.
✅ Переобученная модель как инструмент анализа. Например, чтобы изучить, какие признаки «зашумлены», какие корреляции неустойчивы — переобучение может показать слабые места в данных.
Библиотека собеса по Data Science
На первый взгляд, переобучение — это зло. Но в некоторых ситуациях сознательное переобучение может быть оправдано, если:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Модель может выдавать хорошие предсказания с точки зрения точности, но её оценка вероятностей быть плохо откалиброванной — то есть, предсказанные вероятности не соответствуют реальной частоте событий.
Во многих задачах (медицина, финансы, риск-менеджмент) важна не только метка класса, но и
Почему возникает несоответствие:
Методы исправления
Постобработка:
Встроенные методы:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Маскировка — ситуация, когда модель
Почему возникает:
Как бороться:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
☝️ Последний шанс купить курсы Proglib Academy с доступом навсегда!
Это не просто летняя распродажа, это финал эпохи. Мы дарим скидку 40% на все курсы, включая полностью обновлённый курс по Python (предложение НЕ ДЕЙСТВУЕТ только на курс по AI-агентам для DS-специалистов).
Но главное: с 1 августа доступ ко всем новым курсам станет ограниченным. Успейте инвестировать в свои знания на самых выгодных условиях!
👉 Выбрать курс
Это не просто летняя распродажа, это финал эпохи. Мы дарим скидку 40% на все курсы, включая полностью обновлённый курс по Python (предложение НЕ ДЕЙСТВУЕТ только на курс по AI-агентам для DS-специалистов).
Но главное: с 1 августа доступ ко всем новым курсам станет ограниченным. Успейте инвестировать в свои знания на самых выгодных условиях!
👉 Выбрать курс
❤2
Информационная энтропия
Когда мы обучаем модель, особенно классификатор, мы хотим, чтобы её предсказания были точными и уверенными там, где нужно. И вот тут возникает связь:
«Я почти уверен, что это класс А»,
а на самом деле правильный ответ — класс B,
то функция потерь даст сильное наказание.
«Я не знаю, вероятно, 50/50 между A и B»,
то наказание будет мягче.
Эта логика пришла из информационной теории, где цель — сократить неопределённость. Обучение модели можно понимать как процесс уменьшения энтропии — мы учим её делать уверенные и точные предсказания, тем самым сокращая информационный «хаос».
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2
Неопределённость в предсказаниях модели может иметь разные причины, и важно понимать, откуда она берётся:
1. Алейаторная неопределённость —
2. Эпистемическая неопределённость —
Почему это важно:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1
Индуктивное смещение — это всё, что модель
Если выбрать модель с неподходящими индуктивными смещениями, она может и
Почему это важно:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
Это связано с
Модель при этом «предполагает», что новые данные
Причина в том, что модель фактически
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1
🤖 Знаете, чем настоящий AI отличается от чат-бота?
Чат-бот просит перезагрузить роутер, а настоящий AI уже умеет читать ваши эмоции в чате, включать музыку под ваше настроение, контролировать погрузку руды с точностью Терминатора и даже находить на КТ-снимках то, чего не заметит человеческий глаз.
Современные компании для таких задач всё чаще используют Deep Learning — алгоритмы на основе нейросетей. Но чтобы попасть в эту лигу, нужен фундамент. И имя ему — Machine Learning.
Наш новый курс по ML — это не волшебная таблетка. Это честный и структурированный путь в мир Data Science. Мы дадим вам базу, с которой вы:
✅ разберётесь, как мыслят машины (спойлер:матрицами! );
✅ научитесь строить работающие модели, а не карточные домики;
✅ получите трамплин для прыжка в Deep Learning.
Хватит смотреть, как другие запускают ракеты. Пора строить свой собственный космодром.
Начните с фундамента на нашем курсе по Machine Learning!
Чат-бот просит перезагрузить роутер, а настоящий AI уже умеет читать ваши эмоции в чате, включать музыку под ваше настроение, контролировать погрузку руды с точностью Терминатора и даже находить на КТ-снимках то, чего не заметит человеческий глаз.
Современные компании для таких задач всё чаще используют Deep Learning — алгоритмы на основе нейросетей. Но чтобы попасть в эту лигу, нужен фундамент. И имя ему — Machine Learning.
Наш новый курс по ML — это не волшебная таблетка. Это честный и структурированный путь в мир Data Science. Мы дадим вам базу, с которой вы:
✅ разберётесь, как мыслят машины (спойлер:
✅ научитесь строить работающие модели, а не карточные домики;
✅ получите трамплин для прыжка в Deep Learning.
Хватит смотреть, как другие запускают ракеты. Пора строить свой собственный космодром.
Начните с фундамента на нашем курсе по Machine Learning!
«Teacher forcing» — это техника, часто применяемая
Однако у этого подхода есть проблема:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
🔥 Знакомьтесь, преподаватель нашего нового курса по ML — Мария Жарова.
В карточках рассказали, чем Мария занимается и какие советы даёт тем, кто хочет расти в IT и Data Science ☝️
А если вы уже поняли, что тянуть нечего, начните свой путь в ML правильно: с реальной практикой, поддержкой ментора и видимым результатом.
👉 Записывайтесь на курс
В карточках рассказали, чем Мария занимается и какие советы даёт тем, кто хочет расти в IT и Data Science ☝️
А если вы уже поняли, что тянуть нечего, начните свой путь в ML правильно: с реальной практикой, поддержкой ментора и видимым результатом.
👉 Записывайтесь на курс
👉 Почему при работе с большими языковыми моделями иногда полезно использовать «температуру» (temperature) в генерации текста
Температура — это параметр,который регулирует степень случайности в выборе следующего слова. Изменяя её, можно балансировать между креативностью и предсказуемостью модели.
Что даёт изменение температуры:
➡️ Низкая температура (близко к 0)
Модель становится более «консервативной», выбирает наиболее вероятные слова. Текст получается более логичным и связным, но может быть скучным и повторяющимся.
➡️ Высокая температура (выше 1)
Модель начинает экспериментировать, выбирает менее вероятные слова. Это повышает разнообразие и креативность, но иногда приводит к бессмысленным или нестыковочным фразам.
➡️ Средняя температура (~0.7)
Часто используется как компромисс — текст остаётся интересным, но не теряет смысла.
Библиотека собеса по Data Science
Температура — это параметр,
Что даёт изменение температуры:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤4