Please open Telegram to view this post
VIEW IN TELEGRAM
Доверительный интервал (confidence interval) — это концепция из частотной статистики, где параметр считается
Байесовский достоверный интервал (credible interval) исходит из идеи, что параметр — это
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
😱 Завтра цена на курс «AI-агенты для DS» вырастет
Пока вы думаете — другие уже покупают. Что вы теряете, откладывая решение? Как минимум — 10 000 рублей, именно столько вы переплатите завтра. Как максимум — шанс войти в топ-1% дата-сайентистов, которые умеют строить AI-агенты.
🎓 Чему вы научитесь на курсе:
— адаптировать LLM под разные предметные области и данные
— собирать свою RAG-систему: от ретривера и реранкера до генератора и оценки качества
— строить AI-агентов с нуля — на основе сценариев, функций и взаимодействия с внешней средой
Решение за вами.
👉 Купить курс по старой цене
Пока вы думаете — другие уже покупают. Что вы теряете, откладывая решение? Как минимум — 10 000 рублей, именно столько вы переплатите завтра. Как максимум — шанс войти в топ-1% дата-сайентистов, которые умеют строить AI-агенты.
🎓 Чему вы научитесь на курсе:
— адаптировать LLM под разные предметные области и данные
— собирать свою RAG-систему: от ретривера и реранкера до генератора и оценки качества
— строить AI-агентов с нуля — на основе сценариев, функций и взаимодействия с внешней средой
Решение за вами.
👉 Купить курс по старой цене
proglib.academy
Курс|AI-агенты для DS-специалистов
На курсе ты разберёшься, как работают AI-агенты и как их применять в работе — от текстовых помощников до систем, помогающих принимать решения. Разберем архитектуру агентов, связку с внешними API, пайплайны действий и популярные библиотеки. Курс включает реальные…
Batch normalization рассчитывает
Dropout случайно отключает нейроны, предполагая
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔 Как сбалансировать уровень детализации данных и приватность пользователя, если хочется отслеживать каждое действие на сайте
Сбор очень детальных данных (например, движений мыши или всех кликов) может дать точную картину вовлечённости, но это часто противоречит ожиданиям пользователей и законам.
Чтобы найти баланс, можно:
—Использовать агрегированные или анонимизированные метрики — например, сохранять данные на уровне сессии без личных идентификаторов.
—Получать явное согласие пользователей и чётко объяснять, какие данные собираются и зачем.
—Применять методы дифференциальной приватности, чтобы нельзя было определить конкретного пользователя даже в больших массивах данных.
Важно помнить:слишком грубые метрики могут скрыть полезные детали, а избыточный сбор личной информации без чёткого плана её использования может обернуться юридическими или имиджевыми проблемами.
Библиотека собеса по Data Science
Сбор очень детальных данных (например, движений мыши или всех кликов) может дать точную картину вовлечённости, но это часто противоречит ожиданиям пользователей и законам.
Чтобы найти баланс, можно:
—
—
—
Важно помнить:
Библиотека собеса по Data Science
🖼 Какие методы помогают визуализировать компромисс между точностью (precision) и полнотой (recall)
Наиболее распространённый способ —Precision-Recall кривая. Она показывает, как меняются precision и recall при изменении порога классификации от 0 до 1.
📝 Если модель удерживает высокую точность при высокой полноте — это хороший признак.
📝 Если precision резко падает при увеличении recall, значит модель плохо справляется с определением положительных примеров при более мягких порогах.
Также можно использоватьROC-кривую (True Positive Rate против False Positive Rate), но при сильной дисбалансировке классов Precision-Recall кривая информативнее, особенно при анализе качества на миноритарном классе.
Библиотека собеса по Data Science
Наиболее распространённый способ —
Также можно использовать
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Пора задуматься о более сложной модели, если:
Решение всегда должно быть балансом между
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Не пропустите событие лета для DS-комьюнити
23 июня, 19:00 Мск — бесплатный вебинар с Никитой Зелинским «AI-агенты для DS: обзор курса и практические кейсы»
😤 Пока все обсуждают, «как бы внедрить LLM», мы покажем, как строить полноценных AI-агентов, которые делают работу вместо тебя. За час Никита разложит по полочкам:
— архитектуру курса и ключевые модули
— частые ошибки студентов, о которых не принято говорить вслух
— реальные юзкейсы: от чат-ассистентов до систем поддержки решений в проде
➡️ Что почитать от Никиты до Веба:
— Как adversarial-атаки живут даже при смене модели (и почему «подвинуть кровати в борделе» не спасёт)
— Самый быстрый пакетный менеджер uv и эксперимент «pip vs uv»
— 17 методов XAI и 20 метрик на NIPS’24: как не утонуть в «объяснимости»
⚡️ Хотели задать Никите свой каверзный вопрос? Ловите шанс: только в прямом эфире — отвечаем на всё, что обычно «остаётся за кадром».
⏰ МЕСТ МАЛО регистрация закроется, как только забьём комнату. Действуй сейчас → https://clc.to/1iGw6Q
23 июня, 19:00 Мск — бесплатный вебинар с Никитой Зелинским «AI-агенты для DS: обзор курса и практические кейсы»
— архитектуру курса и ключевые модули
— частые ошибки студентов, о которых не принято говорить вслух
— реальные юзкейсы: от чат-ассистентов до систем поддержки решений в проде
— Как adversarial-атаки живут даже при смене модели (и почему «подвинуть кровати в борделе» не спасёт)
— Самый быстрый пакетный менеджер uv и эксперимент «pip vs uv»
— 17 методов XAI и 20 метрик на NIPS’24: как не утонуть в «объяснимости»
⚡️ Хотели задать Никите свой каверзный вопрос? Ловите шанс: только в прямом эфире — отвечаем на всё, что обычно «остаётся за кадром».
⏰ МЕСТ МАЛО регистрация закроется, как только забьём комнату. Действуй сейчас → https://clc.to/1iGw6Q
Please open Telegram to view this post
VIEW IN TELEGRAM
Один из способов — проверить, насколько хорошо латентные признаки работают
Также полезен анализ
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Выбор порогов зависит от
Если в данных видны
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
😤 «AI-агенты — это всё игрушки, зачем на это курс покупать, когда всё есть в интернете?!»
Ага, конечно. Вот только на YouTube никто не:
Уже 23 июня в 19:00 по МСК ты можешь сам всё узнать на бесплатном вебинаре с экспертом Никитой Зелинским.
👉 Что будет на вебинаре:
— Разбор структуры курса
— Ответы на частые вопросы студентов
— Примеры из реальных проектов с AI-агентами
— И, конечно, как это всё можно использовать в работе прямо сейчас
А если уже всё понял и хочешь идти учиться — лови промокодlucky на 5.000₽
🔗 Ссылка на курс
P.s. Ждем тебя!
Ага, конечно. Вот только на YouTube никто не:
• Разберет твои вопросы вживую
• Не покажет, как применять AI-агентов на практике
• Не поможет встроить это в реальную работу DS-специалиста
Уже 23 июня в 19:00 по МСК ты можешь сам всё узнать на бесплатном вебинаре с экспертом Никитой Зелинским.
👉 Что будет на вебинаре:
— Разбор структуры курса
— Ответы на частые вопросы студентов
— Примеры из реальных проектов с AI-агентами
— И, конечно, как это всё можно использовать в работе прямо сейчас
А если уже всё понял и хочешь идти учиться — лови промокод
🔗 Ссылка на курс
P.s. Ждем тебя!
Работа с многоклассовыми наборами данных, где некоторые классы сильно недопредставлены, может быть сложной, даже при использовании стратифицированных методов.
StratifiedKFold
и StratifiedShuffleSplit
стараются сохранить пропорции классов в каждом сплите, но если у некоторых классов слишком мало примеров, они могут не попасть в некоторые тестовые выборки. Это происходит просто потому, что данных недостаточно, чтобы обеспечить их равномерное распределение.Возможные решения:
Частные случаи:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 Пример:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
😱 Уже завтра — вебинар про AI-агентов! Мест почти не осталось
На вебинаре вы получите то, чего нет в открытых источниках — живой разбор, примеры и прямой диалог с экспертом. Но только если придёте.
➡️ Что будет:
— покажем структуру курса и ключевые модули
— обсудим вопросы, которые обычно остаются за кадром
— разберём реальные кейсы: как применять AI-агентов — от чат-ботов до систем поддержки решений
📅 Уже 23 июня в 19:00 МСК
🎙️ Ведёт Никита Зелинский — эксперт в AI и DS
👉 Зарегистрируйтесь заранее, чтобы не забыть:
https://clc.to/_lDV0Q
🫢 Для тех, кто дочитал до конца →промокод lucky, он даст −5.000₽ на курс
На вебинаре вы получите то, чего нет в открытых источниках — живой разбор, примеры и прямой диалог с экспертом. Но только если придёте.
➡️ Что будет:
— покажем структуру курса и ключевые модули
— обсудим вопросы, которые обычно остаются за кадром
— разберём реальные кейсы: как применять AI-агентов — от чат-ботов до систем поддержки решений
📅 Уже 23 июня в 19:00 МСК
🎙️ Ведёт Никита Зелинский — эксперт в AI и DS
👉 Зарегистрируйтесь заранее, чтобы не забыть:
https://clc.to/_lDV0Q
🫢 Для тех, кто дочитал до конца →
Понижение размерности (например, с помощью PCA, ICA или автоэнкодеров) сжимает признаки в более компактное представление. Это может
Однако стоит быть осторожным:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Когда редкий класс очень мал (например, менее 1%), простое увеличение выборки (oversampling) может не решить проблему.
В таких случаях лучше использовать
Также помогает
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Log-loss (логарифмическая функция потерь) учитывает не только правильность предсказания, но и
Например, если модель предсказывает класс A с вероятностью 0.51, а правильный ответ — A, то accuracy посчитает это успешным предсказанием. Log-loss же
Таким образом, log-loss —
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
🤖 Нейросети для дата-сайентиста: свежий гид по инструментам
Мир нейросетей меняется каждый день — выбрать подходящий инструмент для задач Data Science непросто.
Мы собрали в статье то, что действительно работает: какие модели помогают автоматизировать рутину, ускоряют кодинг и дают ощутимый буст продуктивности.
📊 Что выбрать под вашу задачу — читайте в обзоре!
📌 Подробнее: https://proglib.io/sh/yq0MaQtHrn
Библиотека дата-сайентиста #буст
Мир нейросетей меняется каждый день — выбрать подходящий инструмент для задач Data Science непросто.
Мы собрали в статье то, что действительно работает: какие модели помогают автоматизировать рутину, ускоряют кодинг и дают ощутимый буст продуктивности.
📊 Что выбрать под вашу задачу — читайте в обзоре!
📌 Подробнее: https://proglib.io/sh/yq0MaQtHrn
Библиотека дата-сайентиста #буст
Сейчас большинство представлений об ИИ ограничиваются одним агентом — моделькой, которая что-то предсказывает, генерирует или классифицирует.
Но реальный прорыв начинается, когда этих агентов становится несколько.
Когда они начинают взаимодействовать друг с другом.
Когда появляется координация, распределение ролей, память, планирование — всё это и есть мультиагентные системы (MAS).
— Microsoft делает язык DroidSpeak для общения между LLM
— Open Source-фреймворки вроде LangChain, AutoGen, CrewAI, LangGraph — бурно развиваются
— компании, включая МТС, уже применяют MAS в боевых задачах
🎓 На курсе мы подходим к этому практично:
Именно на третьем уроке вы впервые собираете не просто «умного бота», а живую систему из агентов, которая работает вместе — как команда.
Причём по-настоящему: врач, SQL-аналитик, travel-планировщик, Python-генератор, поисковик.
Please open Telegram to view this post
VIEW IN TELEGRAM