Библиотека собеса по Data Science | вопросы с собеседований
4.32K subscribers
425 photos
10 videos
1 file
411 links
Вопросы с собеседований по Data Science и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/7dfb7235

Для обратной связи: @proglibrary_feeedback_bot

Наши каналы: https://t.me/proglibrary/9197
Download Telegram
Какие архитектуры свёрточных нейронных сетей вы знаете?

🔹LeNet
Одна из первых архитектур, предложенная Яном Лекуном в 1998 году для распознавания рукописных цифр.

🔹AlexNet
Победитель конкурса ImageNet 2012 года. Сеть значительно углубила и расширила возможности CNN, используя ReLU активации и dropout.

🔹VGGNet
Отличается простотой архитектуры, использует небольшие свёртки размера 3x3.

🔹GoogLeNet
В архитектуру ввели Inception module, который одновременно выполняет свёртки с размерами 1×1, 3×3 и 5×5. Эти операции выполняются параллельно для одного и того же входа, а их результаты объединяются, чтобы сформировать окончательный выход..

🔹ResNet
Использует residual blocks, что позволяет создавать сверхглубокие сети, избегая проблемы исчезающего градиента.

#глубокое_обучение
Что такое self-supervised learning?

Так называют процесс, при котором модель машинного обучения учится восстанавливать структуру данных на большом неразмеченном датасете для получения хороших промежуточных представлений. Модель использует внутренние связи и закономерности данных для создания задач, которые позволяют ей обучаться без необходимости в ручной разметке. Это особенно полезно для работы с big data, где разметка может быть трудоёмкой и дорогой.

Примеры задач в self-supervised learning включают предсказание скрытых частей данных, восстановление маскированных элементов в последовательностях, воссоздание правильного порядка последовательности перемешанных кусков одного изображения.

#машинное_обучение
Как можно справиться с проблемой холодного старта в рекомендательных системах?

Проблема холодного старта возникает, когда новая система не имеет достаточных данных о пользователях или предметах.

Например, мы научились делать предсказания для существующих пользователей и товаров. Тогда возникает два вопроса: — «Как рекомендовать товар, который ещё никто не видел?» и «Что рекомендовать пользователю, у которого ещё нет ни одной оценки?». Для решения этой проблемы стараются извлечь информацию из других источников. Это могут быть данные о пользователе из других сервисов, опросник при регистрации и т.д.

Кроме того, существуют задачи, для которых состояние холодного старта является постоянным. Так, в Session Based Recommenders нужно успеть понять что-то о пользователе за то время, что он находится на сайте. В рекомендательных системах новостей тоже постоянно появляются новые единицы контента, а предыдущие быстро устаревают.

#машинное_обучение
Настройка каких гиперпараметров случайного леса может помочь избежать переобучения?

▪️Количество деревьев (n_estimators). Стоит понимать, что чем больше деревьев, тем лучше качество, однако время работы также пропорционально увеличивается. Часто при увеличении n_estimators качество на обучающей выборке может стать 100-процентным, что и свидетельствует о переобучении.

▪️Максимальная глубина дерева (max_depth). Чем меньше глубина, тем быстрее строится и работает случайный лес. При увеличении глубины возрастает риск переобучения.

▪️Минимальное количество образцов для разделения узла (min_samples_split). Увеличение значения уменьшает качество на обучающей выборке, что может помочь избежать переобучения.

▪️Минимальное количество образцов в листе (min_samples_leaf). Влияет так же, как min_samples_split.

▪️Максимальное количество признаков (max_features). Ограничение числа признаков, используемых при каждом разделении, уменьшает вероятность переобучения.

#машинное_обучение
Оцените, насколько вам сложно отвечать на вопросы типа «Как бы вы разработали систему рекомендаций товаров/услуг» (1 — легко, 5 — я вообще не смогу ответить на такой вопрос)
Anonymous Poll
7%
1
9%
2
38%
3
19%
4
27%
5
Коротко объясните метод максимального правдоподобия

Этот метод используется для оценки параметров модели. Вот краткий алгоритм:

▫️Сначала мы предполагаем, что данные распределены согласно некоторому вероятностному закону с функцией вероятности, которая включает в себя параметры модели.
▫️Затем мы составляет функцию правдоподобия, которая показывает вероятность наблюдения данных при этих заданных параметрах.
▫️Наша задача — найти такие значения параметров, которые максимизируют функцию правдоподобия. Это означает, что выбираются такие параметры, при которых вероятность наблюдать данные наиболее высока.

#теория_вероятностей
#машинное_обучение
🧑‍💻 Статьи для IT: как объяснять и распространять значимые идеи

Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.

Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.

Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.

👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Что такое negative sampling в NLP?

Negative sampling появляется в контексте Word2Vec, метода обучения векторных представлений слов. Дело в том, что общий вид функции потерь для Word2Vec представляет собой сумму логарифмов с обратными знаками. Количество этих логарифмов равно объёму обучающей выборки. Внутри каждого логарифма стоит дробь, в знаменателе которой — сумма экспонент, и количество слагаемых совпадает с количеством слов в словаре.

В общем, это всё выглядит несколько ужасающе, особенно если держать в уме, что эту функцию потерь нужно минимизировать. Поэтому нужно как-то упрощать вычисления. Тут и приходит на помощь negative sampling.

Идея такая: на каждой итерации градиентного спуска мы будем оставлять в знаменателе лишь несколько случайно выбранных слагаемых. Фактически, на каждой итерации мы будем работать со случайной и небольшой подвыборкой всей тренировочной выборки.

#NLP
#глубокое_обучение
📊 Где изучать Data Science в 2024 году?

Занимаясь наукой о данных, приходится постоянно учиться. Предлагаем вашему вниманию актуальный обзор из 25 новых книг, курсов, видеолекций и блогов для оттачивания мастерства в Data Science.

🔗 Читать статью
🔗 Зеркало
Какова размерность эмбеддингового слоя в Transformer?

Размерность эмбеддингового слоя определяется двумя параметрами: размером словаря и размерностью эмбеддингов.

▪️Размер словаря (Vocab Size) — это количество уникальных токенов или слов, которое может обрабатывать модель. Эта величина определяется во время обучения модели и зависит от данных, на которых она обучается.
▪️Размерность эмбеддингов (Embedding Dimension) — это количество признаков, используемых для представления каждого токена. Эта размерность обычно фиксирована для данной модели и совпадает с размерностью скрытых слоёв модели.

Таким образом, матрица эмбеддингов в Transformer имеет размерность, равную размеру словаря x размерности эмбеддингов.

#NLP
#глубокое_обучение
💻🚀🏰 Как мы создали ИИ-стартап на хакатоне выходного дня в Германии

Инженер ПО рассказал нам о своих выходных на хакатоне в Кельне, где с командой пытался создать AI-стартап всего за два дня. Участники прошли путь от подачи идей в пятницу вечером до демонстрации работающего приложения к воскресенью.

В качестве бонуса автор привёл список основных пунктов, которые необходимо выполнить для создания стартапа.

🔗 Читать статью
🔗 Зеркало
Хардкорный курс по математике для тех, кто правда любит математику!

Начать с вводных занятий можно здесь, ответив всего на 4 вопроса – https://proglib.io/w/61c44272

Что вас ждет:

– Вводный урок от CPO курса

– Лекции с преподавателями ВМК МГУ по темам: теория множеств, непрерывность функции, основные формулы комбинаторики, матрицы и операции над ними, градиентный спуск

– Практические задания для закрепления материала и ссылки на дополнительные материалы.

⚡️ Переходите и начинайте учиться уже сегодня – https://proglib.io/w/61c44272
Please open Telegram to view this post
VIEW IN TELEGRAM
Назовите основную особенность рекуррентных нейронных сетей

Рекуррентные нейросети применяют для обработки последовательностей. Почему же они подходят под эту задачу?

В обычные нейросети на вход подаётся один объект A, который затем проходит через всю сетку и преобразуется в некий выход. Нейронной сети совершенно неважно, какие объекты вы подавали до A. Они никак не повлияют на выход. В последовательностях же нередко оказывается важна информация от предыдущих объектов.

Рекуррентная нейросеть использует историю подачи объектов для создания выходов. С точки зрения математики тут идея такая: мы будем подавать на вход сети уже два объекта — объект A и некоторое выходное значение, возникшее при обработке предыдущего объекта. Именно оно выступает в качестве «ячейки» памяти, позволяя модели учитывать информацию из предыдущих шагов.

#глубокое_обучение
📈 Стать аналитиком Big Data: пошаговое руководство 2024

Big Data — это наборы данных очень больших размеров, которые также характеризуются многообразием и высокой скоростью обновления. Аналитики больших данных находят и исследуют в них закономерности с помощью специальных программных средств.

В нашей обновлённой статье рассказываем, какие знания, онлайн-курсы, подкасты и книги помогут начать карьеру в сфере Big Data без специального образования🧑‍🎓

🔗 Читать статью
🔗 Зеркало
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.

В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги

👉Подписаться👈