Database Administrator
•
ClickHouse, PostgreSQL, Debian/Ubuntu, Systemd, TCP/IP, iptables, SSH, x509-сертификаты, Bash, LVM•
до 5 000 $ | от 3 лет опытаData engineer
•
SQL, Hive-SQL, Spark, AirFlow, Git, DWH, реляционные и NoSQL базы данных•
Уровень дохода не указан | от 2 лет опытаData-аналитик (Senior)
•
SQL, PostgreSQL, Greenplum, ETL, DWH, оконные функции, оптимизация запросов•
Уровень дохода не указан | от 2 лет опытаPlease open Telegram to view this post
VIEW IN TELEGRAM
В статье описан путь от пет-проекта до системы для трекинга транспорта: нейросети, компьютерное зрение и инструменты, позволяющие «видеть» и анализировать производственные процессы.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
__name__ == "__main__"
в Python?Конструкция
if __name__ == "__main__"
определяет, выполняется ли скрипт как основная программа или импортируется в качестве модуля. Это позволяет запускать код только при непосредственном запуске скрипта, исключая его выполнение при импорте.def greet():
print("Hello from greet!")
if __name__ == "__main__":
greet() # Этот вызов выполнится только при запуске скрипта напрямую
🗣 В этом примере greet() будет вызвана, если файл запускается напрямую. Если скрипт импортируется как модуль, greet() не вызовется, сохраняя модульную структуру кода.
Please open Telegram to view this post
VIEW IN TELEGRAM
В статье рассказывается, как быстро протестировать 16 LLM для создания текстовых прототипов, даже если вы не в теме ML. Берём несколько моделей, сравниваем результаты, оцениваем, подходит ли под задачу.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
На NeurIPS 2024 группа «ИИ в промышленности» представила исследование по эмоциональным большим языковым моделям (LLM). Рассмотрены два подхода: строгая оптимальность и эмоциональный алайнмент. Как LLM правильно эмулируют эмоции? Узнаем!
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Senior Data Scientist (Recommender Systems)
Senior Data Engineer в международный проект HealthTech
Data Engineer
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья описывает процесс создания успешных ИИ-моделей для автоматизированной крипто-торговли на ByBit. Рассматриваются три стратегии, их разработка, оптимизация и результаты, превысившие убытки.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Создайте Python-скрипт, который анализирует временной ряд, выявляя тренд и сезонные колебания. Используйте для этого библиотеку
statsmodels
и визуализируйте результат с помощью matplotlib
. Скрипт должен принимать данные в формате CSV и выводить график, на котором будут отображены исходные данные, тренд и сезонные компоненты.•
python app.py analyze timeseries.csv
— анализирует временной ряд из файла timeseries.csv
, разлагает его на тренд и сезонные компоненты и строит график с визуализацией.Решение задачи
import sys
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
def analyze_timeseries(file_path):
# Чтение данных из CSV
data = pd.read_csv(file_path, parse_dates=['Date'], index_col='Date')
# Проверка, что в данных есть столбец 'Value' для анализа
if 'Value' not in data.columns:
print("Файл должен содержать столбец 'Value' с числовыми значениями.")
sys.exit(1)
# Декомпозиция временного ряда
decomposition = seasonal_decompose(data['Value'], model='additive', period=12)
# Визуализация исходного ряда, тренда, сезонной и остаточной составляющих
plt.figure(figsize=(10, 8))
plt.subplot(411)
plt.plot(data['Value'], label='Исходные данные')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(decomposition.trend, label='Тренд')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(decomposition.seasonal, label='Сезонность')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(decomposition.resid, label='Остатки')
plt.legend(loc='best')
plt.tight_layout()
plt.show ()
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Укажите путь к файлу CSV для анализа.")
sys.exit(1)
file_path = sys.argv[1]
analyze_timeseries(file_path)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
• Всё, что вы хотели знать о Django Channels
• Сборка Python проекта с uv и Docker
• DE-1. DIY ассистент на LLM
• Ваши генераторные выражения сломаны: чиним и разбираемся
• Всё, что вы хотели знать о Django Channels
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья раскрывает, как семантическая сегментация помогает машинам «видеть», разбивая изображение на классы объектов. Обсуждаются её применение в автономных авто, медицине и обработке спутниковых снимков для точного распознавания контекста.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Напишите Python-скрипт, который принимает путь к большому CSV-файлу и подсчитывает количество строк (записей) в файле без загрузки его целиком в память. Скрипт должен быть оптимизирован для работы с большими файлами.
python count_rows.py large_file.csv
Количество строк: 3
Решение задачи
import csv
import sys
def count_rows(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
reader = csv.reader(file)
# Используем enumerate для подсчёта строк, исключая заголовок
row_count = sum(1 for _ in reader) - 1 # Минус 1 для исключения заголовка
return row_count
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Использование: python count_rows.py <file_path>")
sys.exit(1)
file_path = sys.argv[1]
try:
result = count_rows(file_path)
print(f"Количество строк: {result}")
except Exception as e:
print(f"Ошибка: {e}")
Please open Telegram to view this post
VIEW IN TELEGRAM
Junior Data Analyst
Junior Data Scientist (A/B-testing)
Младший Data engineer
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья посвящена опыту СИБУРа в создании DQ-сервиса для обеспечения качества данных. Рассматриваются задачи DQ, архитектура решения и универсальные подходы, применимые для анализа данных в крупных компаниях.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Кросс-валидация — это техника оценки модели, которая помогает избежать переобучения и лучше оценить её обобщающую способность. В классической k-блочной кросс-валидации данные разбиваются на k равных частей, и модель обучается k раз, каждый раз используя одну часть для тестирования и остальные для обучения.
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
data = load_iris()
X, y = data.data, data.target
clf = RandomForestClassifier()
scores = cross_val_score(clf, X, y, cv=5)
print(f'Средняя точность: {scores.mean()}')
Здесь модель обучается 5 раз (5-fold) на разных частях данных, и вычисляется средняя точность.
🗣️ Кросс-валидация помогает лучше понять, как модель будет работать на новых данных, улучшая её обобщение.
Please open Telegram to view this post
VIEW IN TELEGRAM
LLM Engineer
•
Проектирование и создание инфраструктуры для запуска ИИ-агентов, включая работу с RAG, tools, механизмами памяти•
Уровень дохода не указан | Требуемый опыт не указанTech Lead Data Engineer
•
Oracle, Greenplum, ETL, DWH•
до 430 000 ₽ | от 2 лет опытаБизнес-аналитик / Системный аналитик
•
BPMN, UML, Анализ данных, Разработка ТЗ•
до 150 000 ₽ | Средний (Middle)Please open Telegram to view this post
VIEW IN TELEGRAM
Статья описывает опыт создания RAG-пайплайна с использованием Gigachat API для участия в AI Journey. Автор делится инсайтами, полученными в процессе разработки ассистента для рекомендаций товаров, который занял 3-е место.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Напишите функцию, которая принимает строку и возвращает новую строку, из которой удалены все гласные буквы (
a
, e
, i
, o
, u
в любом регистре).print(remove_vowels("Hello World")) # Ожидаемый результат: "Hll Wrld"
print(remove_vowels("Python is great")) # Ожидаемый результат: "Pythn s grt"
Решение задачи
def remove_vowels(s):
vowels = "aeiouAEIOU"
return ''.join(char for char in s if char not in vowels)
# Пример использования:
print(remove_vowels("Hello World")) # Ожидаемый результат: "Hll Wrld"
print(remove_vowels("Python is great")) # Ожидаемый результат: "Pythn s grt"
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🔥1
Статья посвящена прогнозированию продаж FTTB-FMC для ежедневной отчетности. Рассматриваются подходы к анализу данных, ключевые KPI и методы, используемые для прогнозирования продаж в сегменте ШПД и конвергентных продуктов.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья изучает применение метода CUPED в A/B-тестах для повышения чувствительности и сокращения выборок. Рассматривается его использование на этапе дизайна эксперимента без потери статистической мощности.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM