Data Science | Machinelearning [ru]
17.9K subscribers
460 photos
14 videos
29 files
3.32K links
Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence)

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🎞 Как за 6 промтов к ChatGPT создать Python скрипт, скачивающий видео с YouTube для просмотра на телевизоре через Kodi

Статья рассказывает, как с помощью Python и ChatGPT создать скрипт для автоматической загрузки видео с YouTube и генерации метаданных (описаний и обложек) для интеграции с медиацентром Kodi.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ KAN 2.0: Kolmogorov-Arnold Networks Meet Science

Статья представляет перевод работы о нейронных сетях на основе алгоритма Колмогорова-Арнольда (KAN). Рассматриваются новые исследования, связь с наукой и использование библиотеки pykan на Python для практических задач.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Как работает метод feature_importances_ в Python и зачем он нужен в Machine Learning?

Метод feature_importances_ — это атрибут некоторых моделей машинного обучения в библиотеке scikit-learn, который позволяет определить, какие признаки (фичи) наиболее влияют на предсказания модели.

Этот метод возвращает значение важности для каждого признака, показывая, как сильно он влияет на конечный результат. Его использование особенно полезно для деревьев решений и ансамблевых моделей, таких как RandomForest и GradientBoosting.

➡️ В примере ниже мы используем RandomForest для анализа важности признаков и визуализации результатов.

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
import pandas as pd

# Загрузка данных
data = load_iris()
X, y = data.data, data.target

# Создание и обучение модели
model = RandomForestClassifier()
model.fit(X, y)

# Получение и визуализация важности признаков
feature_importances = pd.Series(model.feature_importances_, index=data.feature_names)
feature_importances.sort_values(ascending=False).plot(kind='bar')


🗣 Использование feature_importances_ помогает определить, какие признаки стоит использовать, исключить малозначимые фичи и сделать модель более интерпретируемой.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
📝 Подборка вакансий для сеньоров

Data engineer
SQL, Python, Apache Hadoop
Уровень дохода не указан | от 3 лет

Data Engineer
SQL, Python, Apache Airflow, Greenplum, Apache Spark
от 250 000 ₽ | от 2 лет

Senior Data Scientist
Python
Уровень дохода не указан | опыт не указан

ML-инженер
Машинное обучение, Deep Learning, Нейронные сети, Python, TensorFlow, PyTorch, Keras, Linux, Git, Docker
Уровень дохода не указан | опыт не указан

Разработчик БД (PostgreSQL, прикладные витрины)
SQL, PostgreSQL, ETL, Apache Airflow, Greenplum
Уровень дохода не указан | от 3 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
👎1
💳 Как мы провели ИИ-трансформацию стратегических процессов Сбера

Статья рассказывает об ИИ-трансформации Сбера, включая ключевые задачи, такие как стресс-тестирование, анализ рынков и прогнозирование эффективности сотрудников. Рассматривается использование ИИ до и после трансформации.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🌱 Никогда не прекращай быть «джуниором»

Считаешь, что знаешь всё о своём языке или технологии? Это первый шаг к застою.

👉 Совет: хотя бы раз в месяц изучай что-то новое — экспериментируй с языком, погружайся в новый инструмент или пробуй другой подход. В IT важно не только знать, но и уметь учиться. Это ключ к тому, чтобы оставаться востребованным.
Please open Telegram to view this post
VIEW IN TELEGRAM
📖 «Охота на электроовец: большая книга искусственного интеллекта» или как написать книгу про ИИ без регистрации и SMS

История о том, как за 6 лет я написал двухтомник, посвящённый искусственному интеллекту и машинному обучению.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🤖 Псст, ИИ нужен? 5 полезных инструментов для разработчика

Статья предлагает подборку инструментов, платформ и шаблонов для работы с языковыми моделями и создания ИИ-ассистентов. Рассматриваются протестированные в МТС решения, упрощающие разработку и интеграцию.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
👩‍💻 Нормализация набора данных

Напишите функцию, которая принимает pandas.DataFrame и нормализует все числовые столбцы в диапазон от 0 до 1.

Пример:

import pandas as pd

data = pd.DataFrame({
'feature1': [10, 20, 30, 40],
'feature2': [1, 2, 3, 4],
'feature3': ['A', 'B', 'C', 'D'] # Не числовой столбец
})

result = normalize_dataframe(data)
print(result)
# Ожидаемый результат:
# feature1 feature2 feature3
# 0 0.0 0.0 A
# 1 0.333 0.333 B
# 2 0.667 0.667 C
# 3 1.0 1.0 D


Решение задачи🔽

import pandas as pd

def normalize_dataframe(df):
df_normalized = df.copy()
for col in df.select_dtypes(include='number').columns:
min_val = df[col].min()
max_val = df[col].max()
df_normalized[col] = (df[col] - min_val) / (max_val - min_val)
return df_normalized

# Пример использования:
data = pd.DataFrame({
'feature1': [10, 20, 30, 40],
'feature2': [1, 2, 3, 4],
'feature3': ['A', 'B', 'C', 'D']
})

result = normalize_dataframe(data)
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥52👍1
⚙️ Оптимизация Trellis: запускаем генерацию 3D моделей на GPU с 8ГБ памяти

В статье рассказано, как с помощью оптимизации Trellis удалось снизить требования к видеопамяти с 16GB до 8GB, сохранив качество. Рассмотрены подходы к сжатию данных, переработке структур и повышению доступности инструмента.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
👩‍💻 Предобработка текстовых данных и создание мешка слов (Bag of Words)

Напишите функцию, которая принимает список текстовых строк и возвращает мешок слов (Bag of Words) в виде словаря, где ключи — это уникальные слова, а значения — их частота встречаемости в текстах. Функция должна выполнять базовую предобработку текста: приведение к нижнему регистру, удаление знаков препинания и стоп-слов.

Пример использования:

texts = [
"I love data science!",
"Data science is amazing.",
"Machine learning is a part of data science."
]

bag_of_words = create_bag_of_words(texts)
print(bag_of_words)
# Ожидаемый результат (пример):
# {'love': 1, 'data': 3, 'science': 3, 'amazing': 1, 'machine': 1, 'learning': 1, 'part': 1}


Решение задачи🔽

from collections import defaultdict
import string
from nltk.corpus import stopwords
import nltk

# Загружаем стоп-слова (если не загружены, выполнить:
nltk.download('stopwords'))
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def preprocess_text(text):
# Приведение к нижнему регистру и удаление знаков препинания
text = text.lower()
text = text.translate(str.maketrans('', '', string.punctuation))
return text

def create_bag_of_words(texts):
bag = defaultdict(int)

for text in texts:
# Предобработка текста
processed_text = preprocess_text(text)

# Разделение текста на слова и подсчет частот
for word in processed_text.split():
if word not in stop_words: # Игнорируем стоп-слова
bag[word] += 1

return dict(bag)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41
🔎 Подборка вакансий для джунов

Junior ML Engineer
🟢Python, SQL, Pandas, Django, Sklearn, PyTorch, Docker, OpenAI API
🟢от 1 500 $ | 1–3 года

Аналитик ML/AI/DS
🟢Python, C/C++, R, Java, Go, JS, Kotlin, Swift, PHP, Jira, Confluence, ClearML
🟢от 150 000 ₽ | 1–3 года

Data Scientist
🟢Python, SQL, pandas, Matplotlib, Numpy, CatBoost, XGBoost, LightGBM, Git
🟢от 120 000 до 200 000 ₽ | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61
🤔 Почему DeepSeek Janus-7B — это нечто действительно невероятное

В статье рассматриваются ключевые особенности новой мультимодальной модели DeepSeek Janus-7B, которая, по заявлениям, превосходит популярные AI-инструменты, такие как DALL-E 3 и Stable Diffusion. Подробно анализируются её уникальные технические решения и возможности.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍3🐳3
Что такое Overfitting и как его избежать в моделях машинного обучения?

Overfitting (переобучение) возникает, когда модель слишком хорошо запоминает обучающие данные, включая шум, и теряет способность обобщать информацию на новых данных. Это приводит к высокому качеству на обучающем наборе, но плохим результатам на тестовых данных.

➡️ Основные способы предотвращения Overfitting:

1. Регуляризация:
• L1 и L2-регуляризация добавляют штраф к сложным моделям.
• Уменьшают коэффициенты модели, предотвращая избыточное подстраивание.

2. Dropout (для нейронных сетей):
• Исключение случайных нейронов на этапе обучения.

3. Снижение сложности модели:
• Использование меньшего числа признаков или более простых алгоритмов.

4. Увеличение данных:
• Генерация новых данных или увеличение объёма обучающей выборки.


➡️ Пример:

from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes

# Загружаем данные
data = load_diabetes()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)

# Создаём модель с регуляризацией (Ridge)
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)

# Оцениваем качество
train_score = ridge.score(X_train, y_train)
test_score = ridge.score(X_test, y_test)
print(f"Train Score: {train_score}, Test Score: {test_score}")


🗣️ В этом примере Ridge-регрессия с параметром регуляризации alpha=1.0 помогает предотвратить переобучение, улучшая обобщающую способность модели.

🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥1
📝 Подборка вакансий для мидлов

Аналитик SQL / Data Analyst
SQL, Python, MySQL, PostgreSQL, Yandex DataLens
от 100 000 ₽ | 1+ год

ML-инженер
Python, PyTorch, TensorFlow, Linux, Git, Bash
от 100 000 ₽ | 3+ года

Machine Learning Engineer / Media AI Agents
Python, PyTorch, TensorFlow, Hugging Face, Docker, RESTful API, Pandas
от 2 500 до 5 000 $ | 3+ года
Please open Telegram to view this post
VIEW IN TELEGRAM
2
➡️ Машинное обучение: общие принципы и концепции

В этой статье я рассказываю про основные концепции, типы обучения, типы задач в машинном обучении и также делаю постановку задачи машинного обучения (МО). Все это я рассказываю в своем стиле и понимании.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍1
🤔 Deep learning в определении адреса по описанию: опыт API Яндекс Карт

На Хабре вышла статья о том, как команда API Яндекс Карт применила современные методы машинного обучения в задаче геокодирования. Новая архитектура Геокодера построена на базе active learning и contrastive learning, что позволяет быстро адаптировать инструмент для разных стран. Он способен конвертировать текстовые запросы из поисковой строки в координаты, даже если в них есть ошибки, опечатки или народные названия.

Инструмент показал существенное улучшение метрик в Казахстане: +14% rel@1 и −18% has-irrel@10.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
7🔥6🐳2👍1
⚙️ Physics-based и data-driven моделирование

Статья объясняет различия между физически обоснованными моделями и моделями, основанными на данных, с примерами задач машинного обучения. Рассматривается подход к обработке данных, выбору моделей и их обучению.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥1