Prompt-инженер
•
Технический перевод, техническая документация, Python•
до 200 000 ₽ | Старший (Senior) уровеньАналитик данных / Data Analyst
•
SQL, Python, математическая статистика, Jupyter Notebook, A/B тестирование•
от 300 000 до 400 000 ₽ | Старший (Senior) уровеньDatabase Administrator
•
ClickHouse, PostgreSQL, Python•
до 5 000 $ | Старший (Senior) уровеньPlease open Telegram to view this post
VIEW IN TELEGRAM
Хочешь запустить большую языковую модель в продакшене, но не знаешь, как совместить простоту развертывания с промышленной надежностью? Комбинация vLLM и TorchServe решает эту задачу. Она обеспечивает как простой запуск, так и продвинутые возможности для масштабирования.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Генераторы — это функции в Python, которые возвращают значения по одному с помощью ключевого слова
yield
, вместо полного возврата всех значений сразу. Они полезны для работы с большими объемами данных, так как сохраняют память, генерируя значения на лету.# Генератор для получения первых N чисел Фибоначчи
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a + b
# Используем генератор
for num in fibonacci(5):
print(num)
# Вывод: 0, 1, 1, 2, 3
🗣️ В этом примере генератор fibonacci вычисляет числа по запросу, вместо сохранения всех значений в памяти. Это делает генераторы особенно удобными для работы с потоками данных или бесконечными последовательностями.
Please open Telegram to view this post
VIEW IN TELEGRAM
Team Lead Data Platform
•
Python, SQL, Git, Apache Hadoop, Apache Spark, Apache Airflow, Apache Kafka, Управление людьми•
Уровень дохода не указан | Требуемый опыт не указанTeam Lead Data Scientist (кредитный скоринг)
•
Python, SQL, MatPlotLib, Pandas, NumPy, Машинное обучение, Математическое моделирование, XML, JSON•
Уровень дохода не указан | от 3 лет опытаВедущий аналитик
•
Microsoft Excel, Анализ данных, Pandas, Tableau, PowerBI, SQL, Python, NumPy, SQLAlchemy•
от 100 000 ₽ | Требуемый опыт не указанPlease open Telegram to view this post
VIEW IN TELEGRAM
Порой сложно разобраться, как данные путешествуют через сервисы, API и базу. Это может превращать даже простые задачи в ад.
Please open Telegram to view this post
VIEW IN TELEGRAM
Senior Data Scientist (ML / NLP / RAG)
AI R&D Engineer (Intern)
Data Engineer
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья рассказывает, как организовать и обработать огромный архив аудиозаписей дневников, созданных задолго до эпохи современных speech-to-text технологий. Рассматриваются инструменты и подходы для упорядочивания данных.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Напишите скрипт, который удаляет дублирующиеся строки из CSV-файла на основе указанного столбца и сохраняет результат в новый файл.
python remove_duplicates.py input.csv output.csv column_name
id,name,age
1,John,30
2,Jane,25
4,Bob,35
Решение задачи
import pandas as pd
import sys
if len(sys.argv) < 4:
print("Использование: python remove_duplicates.py <input_file> <output_file> <column_name>")
sys.exit(1)
input_file = sys.argv[1]
output_file = sys.argv[2]
column_name = sys.argv[3]
try:
df = pd.read_csv(input_file)
df = df.drop_duplicates(subset=[column_name])
df.to_csv(output_file, index=False)
print(f"Дубликаты удалены. Результат сохранён в {output_file}")
except Exception as e:
print(f"Ошибка: {e}")
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
• Не бойтесь потоков в Python, они не кусаются
• Рубрика: VPS на пределе возможностей. LLM на CPU с 12Gb RAM
• Предвзятость русскоязычных LLM: кого машина считает «обычным человеком»?
• Семантический веб: краткий обзор технологий и инструментов
• Инструмент обеспечения качества данных: от теории к практике
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья продолжает разбор моделирования температурного временного ряда с двойной сезонностью. Основное внимание уделено подбору оптимальных параметров сезонной модели САРПСС для точного описания данных.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Напишите функцию, которая принимает список email-адресов и возвращает уникальные домены из этого списка. Домен — это часть адреса после символа
@
.["user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]
#{"example.com", "test.com", "sample.com"}
Решение задачи
def get_unique_domains(emails):
domains = {email.split('@')[1] for email in emails}
return domains
# Пример использования:
emails = ["user1@example.com ", " user2@test.com ", " user3@example.com ", " user4@sample.com "]
result = get_unique_domains(emails)
print(result) # Ожидаемый результат: {'example.com ', ' test.com ', ' sample.com '}
Please open Telegram to view this post
VIEW IN TELEGRAM
Data-аналитик в области временных рядов (Junior)
Продуктовый аналитик/junior product менеджер
Data-инженер
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья описывает метод, разработанный для автоматического наполнения графов знаний с помощью LLM, что снижает вероятность «галлюцинаций» и повышает точность ответов. Решение Prompt Me One More Time подробно представлено на TextGraphs-17 конференции ACL-2024.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
os
в Python для работы с файловой системой?Модуль
os
в Python предоставляет инструменты для взаимодействия с операционной системой. С его помощью можно управлять файлами и директориями, получать информацию о системе и переменных окружения, а также выполнять системные команды. Этот модуль особенно полезен для кроссплатформенных сценариев.import os
# Получение текущей директории
current_dir = os.getcwd()
print('Текущая директория:', current_dir)
# Создание новой директории
os.mkdir('new_folder')
print('Создана директория new_folder')
🗣 os позволяет удобно и кроссплатформенно работать с файловой системой, выполнять команды и настраивать окружение.
Please open Telegram to view this post
VIEW IN TELEGRAM
Data-аналитик
•
Python, SQL, Apache Hadoop, Kubernetes, Docker•
Уровень дохода не указан | от 2 лет опытаData-инженер
•
Python, Greenplum, Apache Airflow, Apache Spark, ETL, Apache Hadoop, Linux, PostgreSQL, Kubernetes, SQL•
Уровень дохода не указан | от 2 лет опытаData Analyst
•
Python, Apache Spark, SQL, Apache Hadoop•
Уровень дохода не указан | от 2 лет опытаPlease open Telegram to view this post
VIEW IN TELEGRAM
Статья рассматривает создание AI для покера (Техасского безлимитного холдема) и анализирует его сложность как модели бизнес-отношений. Обсуждаются метрики и стратегии, которые игроки используют в изменяющемся контексте для принятия решений.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Напишите функцию, которая принимает список чисел и возвращает все значения, которые являются выбросами. Выбросы определяются как значения, которые находятся ниже первого квартиля (Q1) минус 1.5 * IQR или выше третьего квартиля (Q3) плюс 1.5 * IQR, где IQR — межквартильный размах.
Входной список:
[10, 12, 14, 15, 15, 16, 16, 16, 17, 18, 19, 100]
Ожидаемый вывод:
[100]
Решение задачи
import numpy as np
def find_outliers(data):
q1 = np.percentile(data, 25)
q3 = np.percentile(data, 75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
return [x for x in data if x < lower_bound or x > upper_bound]
# Пример использования:
input_data = [10, 12, 14, 15, 15, 16, 16, 16, 17, 18, 19, 100]
result = find_outliers(input_data)
print(result) # Ожидаемый результат: [100]
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья знакомит с FlexiPrompt — лёгкой библиотекой для генерации промптов в Python при работе с языковыми моделями. Рассмотрены её преимущества: быстрая интеграция, гибкая настройка диалога и возможность создания нескольких агентов в одной LLM.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
В статье будет рассмотрена практическая проверка возможностей модели Qwen 2.5 Coder на основе задачи перевода кода из VB в C#. Узнаем, сможет ли она справиться с нюансами цикла и корректно адаптировать формулу.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM