Data Science | Machinelearning [ru]
17.9K subscribers
460 photos
14 videos
29 files
3.32K links
Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence)

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🖥 Руководство по созданию приложения для поиска данных на основе агента GraphRAG

Статья описывает приложение, объединяющее GraphRAG и AutoGen-агентов с локальными LLM от Ollama для автономного встраивания и вывода. Рассмотрены ключевые аспекты: интеграция знаний, настройка LLM, вызов функций и интерактивный интерфейс.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2👎1🔥1
👩‍💻 Задачка по Python

Напишите функцию, которая принимает DataFrame и заменяет отсутствующие значения (NaN) в каждом числовом столбце на среднее значение этого столбца. Если столбец содержит только NaN, оставьте его без изменений.

➡️ Пример:

   feature1  feature2  feature3
0 1.0 10.0 NaN
1 2.0 NaN NaN
2 NaN 30.0 NaN
3 4.0 40.0 NaN

feature1 feature2 feature3
0 1.00 10.0 NaN
1 2.00 26.7 NaN
2 2.33 30.0 NaN
3 4.00 40.0 NaN


Решение задачи ⬇️

import pandas as pd

def fill_missing_with_mean(df):
numeric_columns = df.select_dtypes(include=['float', 'int'])
for column in numeric_columns:
if df[column].notna().any(): # Проверяем, есть ли значения не NaN
df[column] = df[column].fillna(df[column].mean())
return df

# Пример использования:
data = pd.DataFrame({
'feature1': [1.0, 2.0, None, 4.0],
'feature2': [10.0, None, 30.0, 40.0],
'feature3': [None, None, None, None]
})

result = fill_missing_with_mean(data)
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41👍1
🔎 Подборка вакансий для джунов

Data engineer (junior)
🟢SQL, Linux, Scala (желательно), понимание ООП, ФП, MapReduce, архитектуры Hadoop YARN, HDFS, Apache Spark
🟢от 70 000 до 140 000 ₽ | Без опыта​

DATA-аналитик/Аналитик данных (Junior)
🟢T-SQL (MS SQL), Python (pandas, SQLAlchemy, requests), ETL, Excel, Power BI, DAX (приветствуется)
🟢95 000 ₽ | 1–3 года

Data Scientist (Junior)
🟢Python, SQL, машинное обучение, статистика, анализ данных
🟢до 150 000 ₽ | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
1
🖥 Ведущий разработчик ChatGPT и его новый проект — Безопасный Сверхинтеллект

Кратко о том, как Суцкевер стал не просто сооснователем OpenAI, а мозгом ChatGPT, почему ушёл в новый проект и зачем вообще создавать "безопасный сверхинтеллект".

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎32🔥2
⚙️ Что такое One-Hot Encoding в Data Science и зачем он используется?

One-Hot Encoding — это способ преобразования категориальных признаков в числовые. Он создаёт бинарные столбцы для каждого уникального значения категории. Это важно, потому что большинство алгоритмов машинного обучения не работают напрямую с текстовыми значениями.

➡️ Пример:

import pandas as pd

df = pd.DataFrame({'Цвет': ['красный', 'синий', 'зелёный']})

encoded = pd.get_dummies(df)
print(encoded)


🗣️ В этом примере get_dummies() преобразует колонку Цвет в три бинарных признака: Цвет_красный, Цвет_синий, Цвет_зелёный. Для каждой строки только один из них равен 1, остальные — 0.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥1
🔎 Подборка вакансий для джунов

​Data Scientist (Middle)
🟢Python, SQL, Pandas, NumPy, Matplotlib
🟢Уровень дохода не указан | 3–6 лет​

Data Engineer (Middle)
🟢Python, Rust, SQL, ClickHouse, PostgreSQL, Greenplum, Airflow, Dagster, Prefect, Docker, Kubernetes
🟢от 200 000 ₽ | 1–3 года​

Data Scientist
🟢Python, SQL, A/B тесты, MLflow, DVC, Apache Airflow, Hadoop, Spark, LLM, NLP
🟢Уровень дохода не указан | 3–6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
👎131🐳1
🖥 Как работает Трансформер: очень простое описание

Вот очень простое объяснение для тех, кто не хочет вдаваться в сложную математику, но и не готов принимать эту ключевую технологию как магию, которая просто работает. Конечно, никакого волшебства тут и нет — идея на самом деле довольно проста..

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥1
👩‍💻 Постройте логистическую регрессию вручную

Напишите простую реализацию логистической регрессии с нуля (без sklearn) для бинарной классификации. Это поможет лучше понять, как работает один из самых базовых алгоритмов в машинном обучении.

Решение задачи🔽

import numpy as np

# Сигмоида
def sigmoid(z):
return 1 / (1 + np.exp(-z))

# Функция логистической регрессии
def logistic_regression(X, y, lr=0.1, epochs=1000):
m, n = X.shape
X = np.c_[np.ones(m), X] # добавляем bias
theta = np.zeros(n + 1)

for _ in range(epochs):
z =
np.dot(X, theta)
h = sigmoid(z)
gradient =
np.dot(X.T, (h - y)) / m
theta -= lr * gradient

return theta

# Предсказание
def predict(X, theta):
X = np.c_[np.ones(X.shape[0]), X]
return sigmoid(
np.dot(X, theta)) >= 0.5

# Пример
X = np.array([[1], [2], [3], [4]])
y = np.array([0, 0, 1, 1])

theta = logistic_regression(X, y)
print(predict(X, theta)) # [False False True True]
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥1
🖥 Про разработку LLM: какие ещё есть справочники и кукбуки

В статье — разбор, почему собирать платформу инференса LLM с нуля не всегда разумно, и как MWS GPT помогает запускать большие языковые модели проще, быстрее и без лишнего сумасшествия.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳21🔥1
⚙️ Неувядающая классика или «чёрный ящик»: кто кого в битве за прогноз. Глава вторая. Продолжение

Статья продолжает разбор моделирования температурного временного ряда с двойной сезонностью. Основное внимание уделено подбору оптимальных параметров сезонной модели САРПСС для точного описания данных.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥1
🔎 Подборка вакансий для сеньоров

​Ведущий Python разработчик
🟢Python, Django, Pydantic, SQL, NoSQL, AWS, Docker, Kubernetes, asyncio, aiohttp, RabbitMQ, Kafka
🟢Уровень дохода не указан | 3–6 лет​

Ведущий менеджер AI (Data Scientist)
🟢Python, машинное обучение, SQL, A/B тесты, NLP, deep learning, RNN, трансформеры, MLOps, DVC, MLflow, Airflow, Hadoop, Spark, LangChain, LangGraph, LLM
🟢Уровень дохода не указан | 3–6 лет

​Senior Data Analyst
🟢SQL, Python, Excel, BI tools (Tableau, PowerBI, Metabase)
🟢Уровень дохода не указан | 3–6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Алоха товарищи. Тут подкаст вышел интересный. Спикер - Антон Полднев — специалист по рекламным технологиям Яндекса с опытом свыше 10 лет.

В подкасте он рассказывает о своем пути от стажера, который писал на Perl, до руководителя и делится инсайтами разработки высоконагруженных систем.
Он объясняет, как работает рекомендательная система рекламы, как ML помогает предсказывать поведение пользователей и вероятность конверсии для бизнеса. ⠀

Ключевые моменты:

👉 Ответственность за рекламные технологии.
👉 Переход на C++ для повышения производительности.
👉 Внедрение нейросетей и машинного обучения.
👉 Важность командной работы и четкого распределения задач.
👉 Эксперименты и A/B-тесты для оптимизации решений.

Также Антон рассказал про Perforator — opensource-инструмент, который помогает анализировать работу приложений на сервере в реальном времени. С помощью этого инструмента разработчики могут увидеть, как распределяются ресурсы серверов и какие программы расходуют их больше всего.

Ссылки на подкаст

👉 YouTube
👉 VK
👉 Rutube
3👍3🔥1
Этичные хакеры будут искать уязвимости в нейросетках Яндекса

Яндекс давно привлекает этичных хакеров для повышения безопасности сервисов. Теперь им предлагают найти ошибки в семействах моделей YandexGPT, YandexART и сопутствующей инфраструктуре в рамках нового конкурса багбаунти-программы «Охота за ошибками». Вознаграждение — до миллиона рублей, в зависимости от критичности проблемы.

Искать нужно будет технические уязвимости, которые могут влиять на результат работы нейросетевых моделей. Неточные ответы Алисы не в счет.
6👍3👎3🔥2🐳1
⚙️ RAG: борьба с низким качеством ответов в условия экономии памяти на GPU

В статье показали, как делали ИИ-помощника на RAG для юристов внутри компании: с какими проблемами столкнулись, как прокачивали точность ответов и экономили память на видеокартах.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥1
⚙️ Что такое StandardScaler в Data Science и зачем он используется?

StandardScaler из библиотеки scikit-learn — это инструмент для нормализации данных. Он приводит признаки (столбцы данных) к одному масштабу со средним значением 0 и стандартным отклонением 1.

Это важно для алгоритмов машинного обучения, чувствительных к масштабу данных — например, линейной регрессии, SVM или KMeans.

➡️ Пример:

from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[10, 200],
[20, 300],
[30, 400]])

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print(X_scaled)


🗣️ В этом примере значения всех признаков преобразуются так, что каждый столбец имеет среднее значение 0 и одинаковый масштаб. Это ускоряет обучение и повышает качество модели.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
4
🔎 Подборка вакансий для лидов

​Team Lead Data Scientist
🟢Python, RecSys, Uplift modeling, Churn prediction, LTV prediction, Forecasting, MLOps (Experiment Tracking, Model Registry, Feature Store, auto-retraining, Online serving, Models monitoring), CI/CD
🟢от 5 000 до 7 250 $ | 3–6 лет​

Lead Data Engineer
🟢Python, Apache Spark, Airflow, PostgreSQL, ClickHouse, SQL, CI/CD, Linux, k8s
🟢от 450 000 ₽ | более 6 лет​

Lead Data Engineer
🟢Hadoop, Spark (batch/streaming), Scala, SQL, Parquet, Hive, Kafka, HBase, ClickHouse, PostgreSQL, Airflow, Zeppelin, Jupyter
🟢Уровень дохода не указан | 3–6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Конфиденциальность мертва: Яндекс и ВК обучают ИИ на ваших личных данных?

В статье проверяют, как Yandex GPT в голосовом ассистенте ведёт себя с персональными данными. Узнают, что он сливает номер телефона и личную инфу, а потом делает вид, что ничего не знает.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61👍1
🎮 Погружайся в чужие проекты как в игру

Попал на новый проект и боишься "чужого" кода? Сложно и страшно?

👉 Совет: относись к чужому проекту как к исследовательской игре. Ваша миссия — понять карту, найти скрытые механики, собрать артефакты знаний. Геймификация процесса сильно снижает стресс и делает погружение гораздо приятнее.
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥1
🔎 Подборка зарубежных вакансий

​Python-разработчик
🟢Python, Django, Docker, PostgreSQL, Kafka, FastAPI, Kubernetes, Keycloak
🟢от 200 000 ₽ | 1–3 года​

AI Engineer
🟢Python, FastAPI, MongoDB, GitLab CI/CD, Kubernetes, AWS, Azure, GCP
🟢Уровень дохода не указан | 1–3 года​

DBA | Senior Database Administrator
🟢PostgreSQL, MongoDB, Redis, MySQL, ClickHouse, Ansible, Bash, Python, Grafana, Prometheus, ELK
🟢Уровень дохода не указан | 3–6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
1
👩‍💻 Разрабатываем первое AI приложение

Статья анализирует роль языка и цифровизации в накоплении и передаче знаний. Обсуждаются вызовы структурирования данных, которые, несмотря на успехи машинного обучения и реляционных баз, всё ещё затрудняют полное понимание накопленной информации.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥2