Data Science | Machinelearning [ru]
17.9K subscribers
460 photos
14 videos
29 files
3.32K links
Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence)

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
👩‍💻 Задачка по Python

Напишите функцию, которая принимает DataFrame и возвращает имена двух столбцов с наибольшей положительной корреляцией.

➡️ Пример:

data = pd.DataFrame({
'A': [1, 2, 3, 4],
'B': [2, 4, 6, 8],
'C': [1, 0, 1, 0],
'D': [10, 20, 30, 40]
})

print(find_highest_correlation(data))
# Ожидаемый результат: ('B', 'D')


Решение задачи ⬇️

def find_highest_correlation(df):
corr_matrix = df.corr()
max_corr = 0
columns = (None, None)

for col1 in corr_matrix.columns:
for col2 in corr_matrix.columns:
if col1 != col2 and corr_matrix[col1][col2] > max_corr:
max_corr = corr_matrix[col1][col2]
columns = (col1, col2)

return columns

# Пример использования:
import pandas as pd

data = pd.DataFrame({
'A': [1, 2, 3, 4],
'B': [2, 4, 6, 8],
'C': [1, 0, 1, 0],
'D': [10, 20, 30, 40]
})

print(find_highest_correlation(data)) # Ожидаемый результат: ('B', 'D')
Please open Telegram to view this post
VIEW IN TELEGRAM
3
⚙️ Когда обучение не идет. Loss is NaN. Причины и решения

В статье разберут, почему при обучении нейросети loss внезапно становится NaN и модель ломается. Расскажут, какие бывают причины этого трэша и как спасти обучение без лишней боли.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 Напишите функцию для расчёта Accuracy вручную

В машинном обучении Accuracy — это метрика качества классификации. Показывает, сколько предсказаний модель сделала правильно.

Решение задачи🔽

def accuracy_score(y_true, y_pred):
correct = 0
for true, pred in zip(y_true, y_pred):
if true == pred:
correct += 1
return correct / len(y_true)

# Пример использования:
y_true = [1, 0, 1, 1, 0, 1]
y_pred = [1, 0, 0, 1, 0, 1]

print(accuracy_score(y_true, y_pred)) # 0.833...
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2
🔎 Подборка вакансий для джунов

​Data Engineer (Junior)
🟢Scala или Python, SQL, Apache Spark, Hadoop, NiFi
🟢Уровень дохода не указан | 1–3 года​

Junior/Middle Data Engineer (Финансовый блок)
🟢Scala, Python, Java, SQL, Apache Spark, Hadoop, Apache Airflow
🟢Уровень дохода не указан | 1–3 года​

Data Analyst (Junior)
🟢SQL, Python, A/B тесты, BI, ML Base, EDA, продуктовая аналитика
🟢от 70 000 ₽ | Без опыта
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Организация ML-проекта с примерами

Организация - это важно. То же относится к ML-проектам. Из каких компонент он должен состоять? Как оформить проект, чтобы всего хватало и было удобно это масштабировать? Рассмотрим организацию по шаблону CookieCutter с примерами.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥1🐳1
⚙️ Что такое One-Hot Encoding в Data Science и зачем он используется?

One-Hot Encoding — это способ преобразования категориальных признаков (текста) в числовой формат для обучения моделей машинного обучения.

Каждое уникальное значение категории превращается в отдельную колонку с 0 или 1.

➡️ Пример:

import pandas as pd

data = pd.DataFrame({
'Color': ['Red', 'Green', 'Blue', 'Red']
})

# Применяем One-Hot Encoding
encoded = pd.get_dummies(data)

print(encoded)

Color_Blue Color_Green Color_Red
0 0 0 1
1 0 1 0
2 1 0 0
3 0 0 1


🗣️ В этом примере категориальный столбец Color преобразован в три колонки с бинарными значениями. Такой формат данных необходим для многих моделей, например, линейной регрессии и деревьев решений.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
2
🔎 Подборка вакансий для мидлов

​Data Scientist (Middle)
🟢Python, SQL, Pandas, NumPy, Matplotlib
🟢Уровень дохода не указан | 3–6 лет​

Инженер данных / Data engineer (middle)
🟢Scala, Python, SQL, Apache Spark, Hadoop, NiFi
🟢Уровень дохода не указан | 1–3 года​

Аналитик данных/Data Analyst
🟢SQL (ClickHouse, Postgres, MS SQL), Python, Jupyter, Git, BI-системы (Datalens)
🟢от 200 000 до 300 000 ₽ | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 Постройте простую модель классификации с использованием scikit-learn

Создайте модель на датасете Iris, обучите классификатор KNeighborsClassifier и сделайте предсказание. Это классическая задача для первых шагов в машинном обучении.

Решение задачи🔽

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# Загружаем данные
iris = load_iris()
X, y =
iris.data, iris.target

# Делим на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Обучаем модель
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)

# Предсказание
y_pred = model.predict(X_test)

# Оценка качества
print(f"Точность: {accuracy_score(y_test, y_pred):.2f}")
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
⚙️ Рекомендательная система для вашего каталога научных работ (и не только!)

Показано, как собрать рекомендательную систему на своём архиве документов, даже если там куча форматов. NLP + графы = машинный архивариус, который сам подсовывает нужные файлы.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥1
⚙️ Анализ данных: от EDA до Tinder-битвы графиков

Расскажу, как мы в МТС учили студентов EDA не лекциями, а игрой по типу Tinder, только для графиков. Был фан, был хардкор и крутые визуализации.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
⚙️ Как я сделала свой первый AI-продукт с ChatGPT и капелькой любви

В этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта (ИИ).

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥1
⚙️ Архитектура проекта автоматического обучения ML-моделей

В статье ребята из Ингосстраха делятся, как автоматизировали запуск и внедрение моделей, чтобы быстрее закрывать запросы бизнеса, не утонув в бэклоге.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥1
⚙️ Что такое StandardScaler из scikit-learn и зачем он нужен?

StandardScaler — это инструмент из библиотеки scikit-learn, который стандартизирует данные: приводит их к распределению со средним 0 и стандартным отклонением 1. Это важно перед обучением моделей, особенно для алгоритмов, чувствительных к масштабу (например, SVM, KNN, линейная регрессия).

➡️ Пример:

from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[10, 200], [15, 300], [14, 250]])

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print(X_scaled)


➡️ После трансформации признаки будут нормализованы, что помогает улучшить сходимость и стабильность модели.

🗣️ StandardScaler — must-have шаг в пайплайне предварительной обработки данных для большинства классических ML-моделей


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
3
⚙️ Как обучить русскоязычную модель рассуждений — LRM?

В статье разбор мультиязычных моделей рассуждений от Lightblue: как они научили DeepSeek "думать" на русском, откуда взяли датасет и зачем запускали LLM как фильтр рассудительности.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥1
👩‍💻 Под капотом asyncio: принципы работы и ключевые концепции

Библиотека asyncio предоставляет полный набор инструментов для организации параллельного выполнения кода в Python с использованием концепции асинхронности. Но как на самом деле работает asyncio? Давайте разберемся в ключевых принципах и понятиях.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
🌌 Делай мини-проекты из собственных болей

Бесит, что каждый день ищешь одну и ту же команду в истории? Или вручную обрезаешь скриншоты? Это подсказки.

👉 Совет: собирай такие мелкие «боли» и превращай их в свои pet-проекты или утилиты. Это не только помогает себе, но и тренирует навык быстрого решения задач и проектирования под реальную жизнь.
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍3🔥1
🔎 Подборка зарубежных вакансий

​Senior Data Analyst
🟢Python, SQL, Amplitude, Firebase, аналитические платформы, маркетинговые метрики
🟢до 3 000 $ | 3–6 лет​

Senior Data Engineer
🟢Python, SQL, Apache Airflow, Exasol, ClickHouse, StarRocks, Snowflake, BigQuery, Redshift, ETL/ELT, S3, Docker, Kubernetes
🟢Уровень дохода не указан | более 6 лет​

Team Lead Data Scientist
🟢Python, RecSys, Uplift modeling, Churn prediction, LTV prediction, Forecasting, MLOps, CI/CD
🟢от 5 000 до 7 250 $ | более 6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
2
⚙️ Как мы создаём Visionatrix: упрощая ComfyUI

В этой статье мы расскажем о нашем опыте работы с ComfyUI и разработке Visionatrix — надстройки, которая упрощает генерацию медиа. Мы обсудим ключевые проблемы, с которыми сталкиваются пользователи, наш подход к их решению, а также вкратце поделимся тем, как мы использовали ChatGPT и Claude для ускорения разработки в условиях ограниченного времени.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2