Deep learning for NLP (RU)
545 subscribers
42 photos
4 files
65 links
Применение методов машинного обучения и глубокого обучения (ML/DL) к обработке естественного языка (NLP).

Конспекты к избранным статьям, описание концепций и основ ML/DL, а также последние новости в этой области.

Контакт: @edwardnlp
Download Telegram
Недавно посетил конференцию ACL 2024 в Бангкоке. В этой серии постов я поделюсь своей подборкой статей с конференции. Основной упор постараюсь сделать на практически применимые статьи и идеи.

Подборку открывают статьи про LLM:
* Prompt Engineering a Prompt Engineer
* Controlled Text Generation for Black-box Language Models via Score-based Progressive Editor
* Referral Augmentation for Zero-Shot Information Retrieval
* On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey
* Synergistic Interplay between Search and Large Language Models for Information Retrieval
* Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval
* Learning Relational Decomposition of Queries for Question Answering from Tables
* VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language Models
* VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language Models
* Choose Your Transformer: Improved Transferability Estimation of Transformer Models on Classification Tasks
* Uncovering Limitations of Large Language Models in Information Seeking from Tables

Читать далее

#ACL2024
🔥4👍2
Это вторая часть подборки статей с #ACL2024. Эта часть тоже преимущественно посвящена LLM:
* When Phrases Meet Probabilities: Enabling Open Relation Extraction with Cooperating Large Language Models
* KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction
* Balanced Data Sampling for Language Model Training with Clustering
* Label-Efficient Model Selection for Text Generation
* Multi-Task Inference: Can Large Language Models Follow Multiple Instructions at Once?
* Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding
* EasyInstruct: An Easy-to-use Instruction Processing Framework for Large Language Models
* Cache & Distil: Optimising API Calls to Large Language Models
* Unsupervised Multilingual Dense Retrieval via Generative Pseudo Labeling
* Anonymization Through Substitution: Words vs Sentences

Читать далее
🔥31
Следующая подборка статей с #ACL2024 посвящена задачам извлечения информации:
* Hypergraph based Understanding for Document Semantic Entity Recognition
* Description Boosting for Zero-Shot Entity and Relation Classification
* Argument-Aware Approach To Event Linking
* AlignRE: An Encoding and Semantic Alignment Approach for Zero-Shot Relation Extraction
* Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs

Читать далее
🔥4👍1
Последняя подборка статей с #ACL2024. На этот раз коснёмся демо статей и инструментов, которые будут полезны в исследовании и разработке.
* GenGO: ACL Paper Explorer with Semantic Features
* LM Transparency Tool: Interactive Tool for Analyzing Transformer Language Models
* NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
* DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows
* LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
* LLMBox: A Comprehensive Library for Large Language Models

Читать далее
🔥3👍2