Some essential concepts every data scientist should understand:
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
๐15โค1
Essential questions related to Data Analytics ๐๐
Question 1: What is the first skill a fresher should learn for a Data Analytics job?
Answer: SQL. Itโs the foundation for retrieving, manipulating, and analyzing data stored in databases.
Question 2: Which SQL database query should we learn - MySQL, PostgreSQL, PL-SQL, etc.?
Answer: Core SQL concepts are consistent across platforms. Focus on joins, aggregations, subqueries, and window functions.
Question 3: How much Python is required?
Answer: Learn basic syntax, loops, conditional statements, functions, and error handling. Then focus on Pandas and Numpy very well for data handling and analysis. Working Knowledge of Python + Good knowledge of Data Analysis Libraries is needed only.
Question 4: What other skills are required?
Answer: MS Excel for data cleaning and analysis, and a BI tool like Power BI or Tableau for creating dashboards.
Question 5: Is knowledge of Macros/VBA required?
Answer: No. Most Data Analyst roles donโt require it.
Question 6: When should I start applying for jobs?
Answer: Apply after acquiring 50% of the required skills and gaining practical experience through projects or internships.
Question 7: Are certifications required?
Answer: No. Projects and hands-on experience are more valuable.
Question 8: How important is data visualization in a Data Analyst role?
Answer: Very important. Use tools like Tableau or Power BI to present insights effectively.
Question 9: Is understanding statistics important for data analysis?
Answer: Yes. Learn descriptive statistics, hypothesis testing, and regression analysis for better insights.
Question 10: How much emphasis should be placed on machine learning?
Answer: A basic understanding is helpful but not essential for Data Analyst roles.
Question 11: What role does communication play in a Data Analyst's job?
Answer: Itโs crucial. You need to present insights in a clear and actionable way for stakeholders.
Question 12: Is data cleaning a necessary skill?
Answer: Yes. Cleaning and preparing raw data is a major part of a Data Analystโs job.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
Question 1: What is the first skill a fresher should learn for a Data Analytics job?
Answer: SQL. Itโs the foundation for retrieving, manipulating, and analyzing data stored in databases.
Question 2: Which SQL database query should we learn - MySQL, PostgreSQL, PL-SQL, etc.?
Answer: Core SQL concepts are consistent across platforms. Focus on joins, aggregations, subqueries, and window functions.
Question 3: How much Python is required?
Answer: Learn basic syntax, loops, conditional statements, functions, and error handling. Then focus on Pandas and Numpy very well for data handling and analysis. Working Knowledge of Python + Good knowledge of Data Analysis Libraries is needed only.
Question 4: What other skills are required?
Answer: MS Excel for data cleaning and analysis, and a BI tool like Power BI or Tableau for creating dashboards.
Question 5: Is knowledge of Macros/VBA required?
Answer: No. Most Data Analyst roles donโt require it.
Question 6: When should I start applying for jobs?
Answer: Apply after acquiring 50% of the required skills and gaining practical experience through projects or internships.
Question 7: Are certifications required?
Answer: No. Projects and hands-on experience are more valuable.
Question 8: How important is data visualization in a Data Analyst role?
Answer: Very important. Use tools like Tableau or Power BI to present insights effectively.
Question 9: Is understanding statistics important for data analysis?
Answer: Yes. Learn descriptive statistics, hypothesis testing, and regression analysis for better insights.
Question 10: How much emphasis should be placed on machine learning?
Answer: A basic understanding is helpful but not essential for Data Analyst roles.
Question 11: What role does communication play in a Data Analyst's job?
Answer: Itโs crucial. You need to present insights in a clear and actionable way for stakeholders.
Question 12: Is data cleaning a necessary skill?
Answer: Yes. Cleaning and preparing raw data is a major part of a Data Analystโs job.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
๐18
5 Free Python Courses for Data Science Beginners
1๏ธโฃ Python for Beginners โ freeCodeCamp
2๏ธโฃ Python โ Kaggle
3๏ธโฃ Python Mini-Projects โ freeCodeCamp
4๏ธโฃ Python Tutorial โ W3Schools
5๏ธโฃ oops with Python- freeCodeCamp
1๏ธโฃ Python for Beginners โ freeCodeCamp
2๏ธโฃ Python โ Kaggle
3๏ธโฃ Python Mini-Projects โ freeCodeCamp
4๏ธโฃ Python Tutorial โ W3Schools
5๏ธโฃ oops with Python- freeCodeCamp
๐15โค4๐ฅฐ3
Industry Data Science vs Academia Data Science
Comparing Data Science in academia and Data Science in industry is like comparing tennis with table tennis: they sound similar but in the end, they are completely different!
5 big differences between Data Science in academia and in industry ๐:
1๏ธโฃ Model vs Data: Academia focuses on models, industry focuses on data. In academia, itโs all about trying to find the best model architecture to optimise a defined metric. In industry, loading and processing the data accounts for around 80% of the job.
2๏ธโฃ Novelty vs Efficiency: The end goal of academia is often to publish a paper and to do so, you will need to find and implement a novel approach. Industry is all about efficiency: reusing existing models as much as possible and applying them to your use case.
3๏ธโฃ Complex vs Simple: More often than not, academia requires complex solutions. I know that this isnโt always the case but unfortunately, complex papers get a higher chance of being accepted at top conferences. In industry, itโs all about simplicity: trying to find the simplest solution that solves a specific problem.
4๏ธโฃ Theory vs Engineering: To succeed in academia, you need to have strong theoretical and maths skills. To succeed in industry, you need to develop strong engineering skills. It is great to be able to train a model in a notebook but if you cannot deploy your model in production, it will be completely useless.
5๏ธโฃ Knowledge impact vs $ impact: In academia, itโs all about creating new work and expanding human knowledge. In industry, it is all about using data to drive value and increase revenue.
Comparing Data Science in academia and Data Science in industry is like comparing tennis with table tennis: they sound similar but in the end, they are completely different!
5 big differences between Data Science in academia and in industry ๐:
1๏ธโฃ Model vs Data: Academia focuses on models, industry focuses on data. In academia, itโs all about trying to find the best model architecture to optimise a defined metric. In industry, loading and processing the data accounts for around 80% of the job.
2๏ธโฃ Novelty vs Efficiency: The end goal of academia is often to publish a paper and to do so, you will need to find and implement a novel approach. Industry is all about efficiency: reusing existing models as much as possible and applying them to your use case.
3๏ธโฃ Complex vs Simple: More often than not, academia requires complex solutions. I know that this isnโt always the case but unfortunately, complex papers get a higher chance of being accepted at top conferences. In industry, itโs all about simplicity: trying to find the simplest solution that solves a specific problem.
4๏ธโฃ Theory vs Engineering: To succeed in academia, you need to have strong theoretical and maths skills. To succeed in industry, you need to develop strong engineering skills. It is great to be able to train a model in a notebook but if you cannot deploy your model in production, it will be completely useless.
5๏ธโฃ Knowledge impact vs $ impact: In academia, itโs all about creating new work and expanding human knowledge. In industry, it is all about using data to drive value and increase revenue.
๐17โค10
If I were to start my Machine Learning career from scratch (as an engineer), I'd focus here (no specific order):
1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving
And building as much as possible.
1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving
And building as much as possible.
๐ฅ17๐6
For those of you who are new to Data Science and Machine learning algorithms, let me try to give you a brief overview. ML Algorithms can be categorized into three types: supervised learning, unsupervised learning, and reinforcement learning.
1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.
2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.
3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content
ENJOY LEARNING ๐๐
1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.
2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.
3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content
ENJOY LEARNING ๐๐
๐23โค4๐ฅ2๐1๐ค1
Time Complexity of 10 Most Popular ML Algorithms
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.
For instance,
1๏ธโฃ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.
2๏ธโฃ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.
3๏ธโฃ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.
4๏ธโฃ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.
5๏ธโฃ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.
For instance,
1๏ธโฃ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.
2๏ธโฃ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.
3๏ธโฃ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.
4๏ธโฃ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.
5๏ธโฃ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.
๐12โค3๐ฅ3
๐ Dive deep into Qualitative Data Analysis with ATLAS.ti and Regression Tests & Data Analysis using SPSS, January 2025
Hands-on experience for your academic and professional journey.
๐ก Takeaways:
โ Free installation guidance for ATLAS.ti & SPSS
โ Lifetime access to recorded sessions & e-materials
โ Certification of participation
โ Practical datasets for hands-on practice
๐ฒ
๐ Team Offer: Every 4th registration is FREE!
๐ Register here: https://forms.gle/Cry9yRCLXYe6nVuK6
Whatsapp group link: https://chat.whatsapp.com/EmkbjEh4oQJ3ZLt5I0581M
Hands-on experience for your academic and professional journey.
๐ก Takeaways:
โ Free installation guidance for ATLAS.ti & SPSS
โ Lifetime access to recorded sessions & e-materials
โ Certification of participation
โ Practical datasets for hands-on practice
๐ฒ
๐ Team Offer: Every 4th registration is FREE!
๐ Register here: https://forms.gle/Cry9yRCLXYe6nVuK6
Whatsapp group link: https://chat.whatsapp.com/EmkbjEh4oQJ3ZLt5I0581M
๐2
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! ๐
I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:
Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.
Here are the probability units you will need to focus on:
Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra
Python:
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking
Machine Learning Prerequisites:
Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data
Machine Learning Fundamentals
Using scikit-learn library in combination with other Python libraries for:
Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)
Solving two types of problems:
Regression
Classification
Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.
In Python, itโs the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.
Deep Learning:
Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models
Machine Learning Project Deployment
Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:
Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:
Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.
Here are the probability units you will need to focus on:
Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra
Python:
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking
Machine Learning Prerequisites:
Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data
Machine Learning Fundamentals
Using scikit-learn library in combination with other Python libraries for:
Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)
Solving two types of problems:
Regression
Classification
Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.
In Python, itโs the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.
Deep Learning:
Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models
Machine Learning Project Deployment
Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:
Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
๐10โค6
Here is how you can explain your project in an interview
When youโre in an interview, itโs super important to know how to talk about your projects in a way that impresses the interviewer. Here are some key points to help you do just that:
โค ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ข๐๐ฒ๐ฟ๐๐ถ๐ฒ๐:
- Start with a quick summary of the project you worked on. What was it all about? What were the main goals? Keep it short and sweet something you can explain in about 30 seconds.
โค ๐ฃ๐ฟ๐ผ๐ฏ๐น๐ฒ๐บ ๐ฆ๐๐ฎ๐๐ฒ๐บ๐ฒ๐ป๐:
- What problem were you trying to solve with this project? Explain why this problem was important and needed addressing.
โค ๐ฃ๐ฟ๐ผ๐ฝ๐ผ๐๐ฒ๐ฑ ๐ฆ๐ผ๐น๐๐๐ถ๐ผ๐ป:
- Describe the solution you came up with. How does it work, and why is it a good fix for the problem?
โค ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ผ๐น๐ฒ:
- Talk about what you specifically did. What were your main tasks? Did you face any challenges, and how did you overcome them? Make sure itโs clear whether you were leading the project, a key player, or supporting the team.
โค ๐ง๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ถ๐ฒ๐ ๐ฎ๐ป๐ฑ ๐ง๐ผ๐ผ๐น๐:
- Mention the tech and tools you used. This shows your technical know-how and your ability to choose the right tools for the job.
โค ๐๐บ๐ฝ๐ฎ๐ฐ๐ ๐ฎ๐ป๐ฑ ๐๐ฐ๐ต๐ถ๐ฒ๐๐ฒ๐บ๐ฒ๐ป๐๐:
- Share the results of your project. Did it make things better? How? Mention any improvements, efficiencies, or positive feedback you got. This helps show the project was a success and highlights your contribution.
โค ๐ง๐ฒ๐ฎ๐บ ๐๐ผ๐น๐น๐ฎ๐ฏ๐ผ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- If you worked with a team, talk about how you collaborated. What was your role in the team? How did you communicate and contribute to the teamโs success?
โค ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐:
- Reflect on what you learned from the project. How did it help you grow professionally? What new skills did you gain, and what would you do differently next time?
โค ๐ง๐ถ๐ฝ๐ ๐ณ๐ผ๐ฟ ๐ฌ๐ผ๐๐ฟ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- Be ready with a 30 second elevator pitch about your projects, and also have a five-minute detailed overview ready.
- Know why you chose the project, what your role was, what decisions you made, and how the results compared to what you expected.
- Be clear on the scope of the project whether it was a long-term effort or a quick task.
- If thereโs a pause after you describe the project, donโt hesitate to ask if theyโd like more details or if thereโs a specific part theyโre interested in.
Remember, ๐ฐ๐ผ๐บ๐บ๐๐ป๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ถ๐ ๐ธ๐ฒ๐. You might have done great work, but if you donโt explain it well, itโs hard for the interviewer to understand your impact. So, practice explaining your projects with clarity.
When youโre in an interview, itโs super important to know how to talk about your projects in a way that impresses the interviewer. Here are some key points to help you do just that:
โค ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ข๐๐ฒ๐ฟ๐๐ถ๐ฒ๐:
- Start with a quick summary of the project you worked on. What was it all about? What were the main goals? Keep it short and sweet something you can explain in about 30 seconds.
โค ๐ฃ๐ฟ๐ผ๐ฏ๐น๐ฒ๐บ ๐ฆ๐๐ฎ๐๐ฒ๐บ๐ฒ๐ป๐:
- What problem were you trying to solve with this project? Explain why this problem was important and needed addressing.
โค ๐ฃ๐ฟ๐ผ๐ฝ๐ผ๐๐ฒ๐ฑ ๐ฆ๐ผ๐น๐๐๐ถ๐ผ๐ป:
- Describe the solution you came up with. How does it work, and why is it a good fix for the problem?
โค ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ผ๐น๐ฒ:
- Talk about what you specifically did. What were your main tasks? Did you face any challenges, and how did you overcome them? Make sure itโs clear whether you were leading the project, a key player, or supporting the team.
โค ๐ง๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ถ๐ฒ๐ ๐ฎ๐ป๐ฑ ๐ง๐ผ๐ผ๐น๐:
- Mention the tech and tools you used. This shows your technical know-how and your ability to choose the right tools for the job.
โค ๐๐บ๐ฝ๐ฎ๐ฐ๐ ๐ฎ๐ป๐ฑ ๐๐ฐ๐ต๐ถ๐ฒ๐๐ฒ๐บ๐ฒ๐ป๐๐:
- Share the results of your project. Did it make things better? How? Mention any improvements, efficiencies, or positive feedback you got. This helps show the project was a success and highlights your contribution.
โค ๐ง๐ฒ๐ฎ๐บ ๐๐ผ๐น๐น๐ฎ๐ฏ๐ผ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- If you worked with a team, talk about how you collaborated. What was your role in the team? How did you communicate and contribute to the teamโs success?
โค ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐:
- Reflect on what you learned from the project. How did it help you grow professionally? What new skills did you gain, and what would you do differently next time?
โค ๐ง๐ถ๐ฝ๐ ๐ณ๐ผ๐ฟ ๐ฌ๐ผ๐๐ฟ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- Be ready with a 30 second elevator pitch about your projects, and also have a five-minute detailed overview ready.
- Know why you chose the project, what your role was, what decisions you made, and how the results compared to what you expected.
- Be clear on the scope of the project whether it was a long-term effort or a quick task.
- If thereโs a pause after you describe the project, donโt hesitate to ask if theyโd like more details or if thereโs a specific part theyโre interested in.
Remember, ๐ฐ๐ผ๐บ๐บ๐๐ป๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ถ๐ ๐ธ๐ฒ๐. You might have done great work, but if you donโt explain it well, itโs hard for the interviewer to understand your impact. So, practice explaining your projects with clarity.
๐13โค5
1ยณ+2ยณ+3ยณ+4ยณ+5ยณ+6ยณ+7ยณ+8ยณ+9ยณ
= 2025 ๐ Happy New Year ๐ฅณ
= 2025 ๐ Happy New Year ๐ฅณ
โค51๐7
๐ Embark on a Journey of Discovery and Innovation with @DeepLearning_ai! and @MachineLearning_Programming ๐
What We Offer:
* ๐ง Deep Dives into AI & ML.
* ๐ค Latest in Deep Learning.
* ๐ Data Science Mastery.
* ๐ Computer Vision & Image Processing.
* ๐ Exclusive Access to Research Papers.
Why Us?
* Connect with experts and enthusiasts.
* Stay updated, stay ahead.
* Empower your knowledge and career in tech.
Ready for a deep dive? Click here to explore, learn, and grow with
@DeepLearning_ai
@MachineLearning_Programming!
Step into the futureโtoday.
What We Offer:
* ๐ง Deep Dives into AI & ML.
* ๐ค Latest in Deep Learning.
* ๐ Data Science Mastery.
* ๐ Computer Vision & Image Processing.
* ๐ Exclusive Access to Research Papers.
Why Us?
* Connect with experts and enthusiasts.
* Stay updated, stay ahead.
* Empower your knowledge and career in tech.
Ready for a deep dive? Click here to explore, learn, and grow with
@DeepLearning_ai
@MachineLearning_Programming!
Step into the futureโtoday.
Forwarded from Free Courses with Certificate - Python Programming, Data Science, Java Coding, SQL, Web Development, AI, ML, ChatGPT Expert
In every family tree, there is 1 person who breaks out the middle-class chain and works hard to become a millionaire and changes the lives of everyone forever.
May that be you in 2025.
Happy New Year!
May that be you in 2025.
Happy New Year!
โค53