Data Science Interview Questions Part 4:
31. What is reinforcement learning?
A type of machine learning where an agent learns to make decisions by taking actions in an environment to maximize cumulative rewards through trial and error.
32. What tools and libraries do you use?
Commonly used tools: Python, R, Jupyter Notebooks, SQL, Excel. Libraries: Pandas, NumPy, Scikit-learn, TensorFlow, PyTorch, Matplotlib, Seaborn.
33. How do you interpret model results for non-technical audiences?
Use simple language, visualize key insights (charts, dashboards), focus on business impact, avoid jargon, and use analogies or stories.
34. What is dimensionality reduction?
Techniques like PCA or t-SNE to reduce the number of features while preserving essential information, improving model efficiency and visualization.
35. Handling categorical variables in machine learning.
Use encoding methods like one-hot encoding, label encoding, target encoding depending on model requirements and feature cardinality.
36. What is exploratory data analysis (EDA)?
The process of summarizing main characteristics of data often using visual methods to understand patterns, spot anomalies, and test hypotheses.
37. Explain t-test and chi-square test.
⦁ t-test compares means between two groups to see if they are statistically different.
⦁ Chi-square test assesses relationships between categorical variables.
38. How do you ensure fairness and avoid bias in models?
Audit data for bias, use balanced training datasets, apply fairness-aware algorithms, monitor model outcomes, and include diverse perspectives in evaluation.
39. Describe a complex data problem you solved.
(Your personal story here, describing the problem, approach, tools used, and impact.)
40. How do you stay updated with new data science trends?
Follow blogs, research papers, online courses, attend webinars, participate in communities (Kaggle, Stack Overflow), and read newsletters.
Data science interview questions: https://t.me/datasciencefun/3668
Double Tap ♥️ If This Helped You
31. What is reinforcement learning?
A type of machine learning where an agent learns to make decisions by taking actions in an environment to maximize cumulative rewards through trial and error.
32. What tools and libraries do you use?
Commonly used tools: Python, R, Jupyter Notebooks, SQL, Excel. Libraries: Pandas, NumPy, Scikit-learn, TensorFlow, PyTorch, Matplotlib, Seaborn.
33. How do you interpret model results for non-technical audiences?
Use simple language, visualize key insights (charts, dashboards), focus on business impact, avoid jargon, and use analogies or stories.
34. What is dimensionality reduction?
Techniques like PCA or t-SNE to reduce the number of features while preserving essential information, improving model efficiency and visualization.
35. Handling categorical variables in machine learning.
Use encoding methods like one-hot encoding, label encoding, target encoding depending on model requirements and feature cardinality.
36. What is exploratory data analysis (EDA)?
The process of summarizing main characteristics of data often using visual methods to understand patterns, spot anomalies, and test hypotheses.
37. Explain t-test and chi-square test.
⦁ t-test compares means between two groups to see if they are statistically different.
⦁ Chi-square test assesses relationships between categorical variables.
38. How do you ensure fairness and avoid bias in models?
Audit data for bias, use balanced training datasets, apply fairness-aware algorithms, monitor model outcomes, and include diverse perspectives in evaluation.
39. Describe a complex data problem you solved.
(Your personal story here, describing the problem, approach, tools used, and impact.)
40. How do you stay updated with new data science trends?
Follow blogs, research papers, online courses, attend webinars, participate in communities (Kaggle, Stack Overflow), and read newsletters.
Data science interview questions: https://t.me/datasciencefun/3668
Double Tap ♥️ If This Helped You
❤5👍1
🌟🌍 Be part of the global science community!
Follow the UNESCO–Al Fozan International Prize for inspiring stories, breakthroughs, and opportunities in STEM (Science, Technology, Engineering, and Mathematics).
📲 Follow us here:
https://x.com/UNESCO_AlFozan/status/1955702609932902734
Follow the UNESCO–Al Fozan International Prize for inspiring stories, breakthroughs, and opportunities in STEM (Science, Technology, Engineering, and Mathematics).
📲 Follow us here:
https://x.com/UNESCO_AlFozan/status/1955702609932902734
1❤5
🚀 𝗧𝗼𝗽 𝟯 𝗦𝗸𝗶𝗹𝗹𝘀 𝗧𝗼 𝗗𝗼𝗺𝗶𝗻𝗮𝘁𝗲 𝟮𝟬𝟮𝟱 😍
Start learning the most in-demand tech skills with FREE certifications 👇
✅ AI & ML → https://pdlink.in/3U3eZuq
✅ Data Analytics → https://pdlink.in/4lp7hXQ
✅ Data Science, Fullstack & More → https://pdlink.in/3ImMFAB
🎓 100% FREE | Learn Anywhere, Anytime
💡 Don’t just keep up with 2025, stay ahead of it!
Start learning the most in-demand tech skills with FREE certifications 👇
✅ AI & ML → https://pdlink.in/3U3eZuq
✅ Data Analytics → https://pdlink.in/4lp7hXQ
✅ Data Science, Fullstack & More → https://pdlink.in/3ImMFAB
🎓 100% FREE | Learn Anywhere, Anytime
💡 Don’t just keep up with 2025, stay ahead of it!
❤1
🚀Here are 5 fresh Project ideas for Data Analysts 👇
🎯 𝗔𝗶𝗿𝗯𝗻𝗯 𝗢𝗽𝗲𝗻 𝗗𝗮𝘁𝗮 🏠
https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata
💡This dataset describes the listing activity of homestays in New York City
🎯 𝗧𝗼𝗽 𝗦𝗽𝗼𝘁𝗶𝗳𝘆 𝘀𝗼𝗻𝗴𝘀 𝗳𝗿𝗼𝗺 𝟮𝟬𝟭𝟬-𝟮𝟬𝟭𝟵 🎵
https://www.kaggle.com/datasets/leonardopena/top-spotify-songs-from-20102019-by-year
🎯𝗪𝗮𝗹𝗺𝗮𝗿𝘁 𝗦𝘁𝗼𝗿𝗲 𝗦𝗮𝗹𝗲𝘀 𝗙𝗼𝗿𝗲𝗰𝗮𝘀𝘁𝗶𝗻𝗴 📈
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
💡Use historical markdown data to predict store sales
🎯 𝗡𝗲𝘁𝗳𝗹𝗶𝘅 𝗠𝗼𝘃𝗶𝗲𝘀 𝗮𝗻𝗱 𝗧𝗩 𝗦𝗵𝗼𝘄𝘀 📺
https://www.kaggle.com/datasets/shivamb/netflix-shows
💡Listings of movies and tv shows on Netflix - Regularly Updated
🎯𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗷𝗼𝗯𝘀 𝗹𝗶𝘀𝘁𝗶𝗻𝗴𝘀 💼
https://www.kaggle.com/datasets/cedricaubin/linkedin-data-analyst-jobs-listings
💡More than 8400 rows of data analyst jobs from USA, Canada and Africa.
ENJOY LEARNING 👍👍
🎯 𝗔𝗶𝗿𝗯𝗻𝗯 𝗢𝗽𝗲𝗻 𝗗𝗮𝘁𝗮 🏠
https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata
💡This dataset describes the listing activity of homestays in New York City
🎯 𝗧𝗼𝗽 𝗦𝗽𝗼𝘁𝗶𝗳𝘆 𝘀𝗼𝗻𝗴𝘀 𝗳𝗿𝗼𝗺 𝟮𝟬𝟭𝟬-𝟮𝟬𝟭𝟵 🎵
https://www.kaggle.com/datasets/leonardopena/top-spotify-songs-from-20102019-by-year
🎯𝗪𝗮𝗹𝗺𝗮𝗿𝘁 𝗦𝘁𝗼𝗿𝗲 𝗦𝗮𝗹𝗲𝘀 𝗙𝗼𝗿𝗲𝗰𝗮𝘀𝘁𝗶𝗻𝗴 📈
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
💡Use historical markdown data to predict store sales
🎯 𝗡𝗲𝘁𝗳𝗹𝗶𝘅 𝗠𝗼𝘃𝗶𝗲𝘀 𝗮𝗻𝗱 𝗧𝗩 𝗦𝗵𝗼𝘄𝘀 📺
https://www.kaggle.com/datasets/shivamb/netflix-shows
💡Listings of movies and tv shows on Netflix - Regularly Updated
🎯𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗷𝗼𝗯𝘀 𝗹𝗶𝘀𝘁𝗶𝗻𝗴𝘀 💼
https://www.kaggle.com/datasets/cedricaubin/linkedin-data-analyst-jobs-listings
💡More than 8400 rows of data analyst jobs from USA, Canada and Africa.
ENJOY LEARNING 👍👍
❤2🥰1
🔥 $10.000 WITH LISA!
Lisa earned $200,000 in a month, and now it’s YOUR TURN!
She’s made trading SO SIMPLE that anyone can do it.
❗️Just copy her signals every day
❗️Follow her trades step by step
❗️Earn $1,000+ in your first week – GUARANTEED!
🚨 BONUS: Lisa is giving away $10,000 to her subscribers!
Don’t miss this once-in-a-lifetime opportunity. Free access for the first 500 people only!
👉 CLICK HERE TO JOIN NOW 👈
Lisa earned $200,000 in a month, and now it’s YOUR TURN!
She’s made trading SO SIMPLE that anyone can do it.
❗️Just copy her signals every day
❗️Follow her trades step by step
❗️Earn $1,000+ in your first week – GUARANTEED!
🚨 BONUS: Lisa is giving away $10,000 to her subscribers!
Don’t miss this once-in-a-lifetime opportunity. Free access for the first 500 people only!
👉 CLICK HERE TO JOIN NOW 👈
📊 Data Science Project Ideas to Practice & Master Your Skills ✅
🟢 Beginner Level
• Titanic Survival Prediction (Logistic Regression)
• House Price Prediction (Linear Regression)
• Exploratory Data Analysis on IPL or Netflix Dataset
• Customer Segmentation (K-Means Clustering)
• Weather Data Visualization
🟡 Intermediate Level
• Sentiment Analysis on Tweets
• Credit Card Fraud Detection
• Time Series Forecasting (Stock or Sales Data)
• Image Classification using CNN (Fashion MNIST)
• Recommendation System for Movies/Products
🔴 Advanced Level
• End-to-End Machine Learning Pipeline with Deployment
• NLP Chatbot using Transformers
• Real-Time Dashboard with Streamlit + ML
• Anomaly Detection in Network Traffic
• A/B Testing & Business Decision Modeling
💬 Double Tap ❤️ for more! 🤖📈
🟢 Beginner Level
• Titanic Survival Prediction (Logistic Regression)
• House Price Prediction (Linear Regression)
• Exploratory Data Analysis on IPL or Netflix Dataset
• Customer Segmentation (K-Means Clustering)
• Weather Data Visualization
🟡 Intermediate Level
• Sentiment Analysis on Tweets
• Credit Card Fraud Detection
• Time Series Forecasting (Stock or Sales Data)
• Image Classification using CNN (Fashion MNIST)
• Recommendation System for Movies/Products
🔴 Advanced Level
• End-to-End Machine Learning Pipeline with Deployment
• NLP Chatbot using Transformers
• Real-Time Dashboard with Streamlit + ML
• Anomaly Detection in Network Traffic
• A/B Testing & Business Decision Modeling
💬 Double Tap ❤️ for more! 🤖📈
❤6
Guys, Big Announcement!
We’ve officially hit 2.5 Million followers — and it’s time to level up together! ❤️
I’m launching a Python Projects Series — designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step, hands-on journey — where you’ll build useful Python projects with clear code, explanations, and mini-quizzes!
Here’s what we’ll cover:
🔹 Week 1: Python Mini Projects (Daily Practice)
⦁ Calculator
⦁ To-Do List (CLI)
⦁ Number Guessing Game
⦁ Unit Converter
⦁ Digital Clock
🔹 Week 2: Data Handling & APIs
⦁ Read/Write CSV & Excel files
⦁ JSON parsing
⦁ API Calls using Requests
⦁ Weather App using OpenWeather API
⦁ Currency Converter using Real-time API
🔹 Week 3: Automation with Python
⦁ File Organizer Script
⦁ Email Sender
⦁ WhatsApp Automation
⦁ PDF Merger
⦁ Excel Report Generator
🔹 Week 4: Data Analysis with Pandas & Matplotlib
⦁ Load & Clean CSV
⦁ Data Aggregation
⦁ Data Visualization
⦁ Trend Analysis
⦁ Dashboard Basics
🔹 Week 5: AI & ML Projects (Beginner Friendly)
⦁ Predict House Prices
⦁ Email Spam Classifier
⦁ Sentiment Analysis
⦁ Image Classification (Intro)
⦁ Basic Chatbot
📌 Each project includes:
✅ Problem Statement
✅ Code with explanation
✅ Sample input/output
✅ Learning outcome
✅ Mini quiz
💬 React ❤️ if you're ready to build some projects together!
You can access it for free here
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Let’s Build. Let’s Grow. 💻🙌
We’ve officially hit 2.5 Million followers — and it’s time to level up together! ❤️
I’m launching a Python Projects Series — designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step, hands-on journey — where you’ll build useful Python projects with clear code, explanations, and mini-quizzes!
Here’s what we’ll cover:
🔹 Week 1: Python Mini Projects (Daily Practice)
⦁ Calculator
⦁ To-Do List (CLI)
⦁ Number Guessing Game
⦁ Unit Converter
⦁ Digital Clock
🔹 Week 2: Data Handling & APIs
⦁ Read/Write CSV & Excel files
⦁ JSON parsing
⦁ API Calls using Requests
⦁ Weather App using OpenWeather API
⦁ Currency Converter using Real-time API
🔹 Week 3: Automation with Python
⦁ File Organizer Script
⦁ Email Sender
⦁ WhatsApp Automation
⦁ PDF Merger
⦁ Excel Report Generator
🔹 Week 4: Data Analysis with Pandas & Matplotlib
⦁ Load & Clean CSV
⦁ Data Aggregation
⦁ Data Visualization
⦁ Trend Analysis
⦁ Dashboard Basics
🔹 Week 5: AI & ML Projects (Beginner Friendly)
⦁ Predict House Prices
⦁ Email Spam Classifier
⦁ Sentiment Analysis
⦁ Image Classification (Intro)
⦁ Basic Chatbot
📌 Each project includes:
✅ Problem Statement
✅ Code with explanation
✅ Sample input/output
✅ Learning outcome
✅ Mini quiz
💬 React ❤️ if you're ready to build some projects together!
You can access it for free here
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Let’s Build. Let’s Grow. 💻🙌
❤13👍1
𝟒 𝐅𝐫𝐞𝐞 𝐃𝐒𝐀 𝐑𝐞𝐬𝐨𝐮𝐫𝐜𝐞𝐬 𝐭𝐨 𝐂𝐫𝐚𝐜𝐤 𝐂𝐨𝐝𝐢𝐧𝐠 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰𝐬😍
Cracking coding interviews isn’t about luck—it’s about mastering Data Structures and Algorithms (DSA) with the right resources🖥🎖
Whether you’re aiming for FAANG, top MNCs, or fast-growing startups, having a strong foundation in DSA will set you apart🧑🎓💥
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/41MsPpe
Start today and turn your DSA fear into DSA mastery!✅️
Cracking coding interviews isn’t about luck—it’s about mastering Data Structures and Algorithms (DSA) with the right resources🖥🎖
Whether you’re aiming for FAANG, top MNCs, or fast-growing startups, having a strong foundation in DSA will set you apart🧑🎓💥
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/41MsPpe
Start today and turn your DSA fear into DSA mastery!✅️
❤1
Which of the following is essential for any well-documented data science project?
Anonymous Quiz
5%
a) Fancy UI design
2%
b) Only code files
85%
c) README file explaining problem, steps & results
8%
d) Just a model accuracy score
❤2
Your model performs well on training data but poorly on test data. What’s likely missing?
Anonymous Quiz
25%
a) Hyperparameter tuning
67%
b) Overfitting handling
4%
c) More print statements
3%
d) Fancy visualizations
❤1
Which file should you upload along with your Jupyter Notebook to make your project reproducible?
Anonymous Quiz
6%
a) Screenshot of results
13%
b) Excel output file
76%
c) requirements.txt or environment.yml
5%
d) A video walkthrough
❤1
Which step is often skipped but highly recommended when presenting a project?
Anonymous Quiz
29%
a) Exploratory Data Analysis
34%
b) Writing comments in code
28%
c) Explaining business impact or value
10%
d) Printing all columns of the dataset
❤1
Which of the following is NOT a recommended practice when uploading a data science project to GitHub?*
Anonymous Quiz
17%
A) Including a well-written README.md with setup and usage instructions
68%
B) Uploading large raw datasets directly into the repository
7%
C) Organizing code into modular scripts under a src/ folder
7%
D) Providing a requirements.txt or environment.yml for dependencies
❤1
𝗕𝗲𝗰𝗼𝗺𝗲 𝗮 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗜𝗻 𝗧𝗼𝗽 𝗠𝗡𝗖𝘀😍
Learn Data Analytics, Data Science & AI From Top Data Experts
Curriculum designed and taught by Alumni from IITs & Leading Tech Companies.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
𝗕𝗼𝗼𝗸 𝗮 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼👇:-
𝗢𝗻𝗹𝗶𝗻𝗲 :- https://pdlink.in/4fdWxJB
𝗛𝘆𝗱𝗲𝗿𝗮𝗯𝗮𝗱 :- https://pdlink.in/4kFhjn3
𝗣𝘂𝗻𝗲 :- https://pdlink.in/45p4GrC
( Hurry Up 🏃♂️Limited Slots )
Learn Data Analytics, Data Science & AI From Top Data Experts
Curriculum designed and taught by Alumni from IITs & Leading Tech Companies.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
𝗕𝗼𝗼𝗸 𝗮 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼👇:-
𝗢𝗻𝗹𝗶𝗻𝗲 :- https://pdlink.in/4fdWxJB
𝗛𝘆𝗱𝗲𝗿𝗮𝗯𝗮𝗱 :- https://pdlink.in/4kFhjn3
𝗣𝘂𝗻𝗲 :- https://pdlink.in/45p4GrC
( Hurry Up 🏃♂️Limited Slots )
❤3
𝗠𝗼𝘀𝘁 𝗔𝘀𝗸𝗲𝗱 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 𝗮𝘁 𝗠𝗔𝗔𝗡𝗚 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀🔥🔥
1. How do you retrieve all columns from a table?
SELECT * FROM table_name;
2. What SQL statement is used to filter records?
SELECT * FROM table_name
WHERE condition;
The WHERE clause is used to filter records based on a specified condition.
3. How can you join multiple tables? Describe different types of JOINs.
SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;
Types of JOINs:
1. INNER JOIN: Returns records with matching values in both tables
SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;
2. LEFT JOIN (or LEFT OUTER JOIN): Returns all records from the left table and matched records from the right table. Unmatched records will have NULL values.
SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;
3. RIGHT JOIN (or RIGHT OUTER JOIN): Returns all records from the right table and matched records from the left table. Unmatched records will have NULL values.
SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;
4. FULL JOIN (or FULL OUTER JOIN): Returns records when there is a match in either left or right table. Unmatched records will have NULL values.
SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;
4. What is the difference between WHERE and HAVING clauses?
WHERE: Filters records before any groupings are made.
SELECT * FROM table_name
WHERE condition;
HAVING: Filters records after groupings are made.
SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;
5. How do you count the number of records in a table?
SELECT COUNT(*) FROM table_name;
This query counts all the records in the specified table.
6. How do you calculate average, sum, minimum, and maximum values in a column?
Average: SELECT AVG(column_name) FROM table_name;
Sum: SELECT SUM(column_name) FROM table_name;
Minimum: SELECT MIN(column_name) FROM table_name;
Maximum: SELECT MAX(column_name) FROM table_name;
7. What is a subquery, and how do you use it?
Subquery: A query nested inside another query
SELECT * FROM table_name
WHERE column_name = (SELECT column_name FROM another_table WHERE condition);
Till then keep learning and keep exploring 🙌
1. How do you retrieve all columns from a table?
SELECT * FROM table_name;
2. What SQL statement is used to filter records?
SELECT * FROM table_name
WHERE condition;
The WHERE clause is used to filter records based on a specified condition.
3. How can you join multiple tables? Describe different types of JOINs.
SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;
Types of JOINs:
1. INNER JOIN: Returns records with matching values in both tables
SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;
2. LEFT JOIN (or LEFT OUTER JOIN): Returns all records from the left table and matched records from the right table. Unmatched records will have NULL values.
SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;
3. RIGHT JOIN (or RIGHT OUTER JOIN): Returns all records from the right table and matched records from the left table. Unmatched records will have NULL values.
SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;
4. FULL JOIN (or FULL OUTER JOIN): Returns records when there is a match in either left or right table. Unmatched records will have NULL values.
SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;
4. What is the difference between WHERE and HAVING clauses?
WHERE: Filters records before any groupings are made.
SELECT * FROM table_name
WHERE condition;
HAVING: Filters records after groupings are made.
SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;
5. How do you count the number of records in a table?
SELECT COUNT(*) FROM table_name;
This query counts all the records in the specified table.
6. How do you calculate average, sum, minimum, and maximum values in a column?
Average: SELECT AVG(column_name) FROM table_name;
Sum: SELECT SUM(column_name) FROM table_name;
Minimum: SELECT MIN(column_name) FROM table_name;
Maximum: SELECT MAX(column_name) FROM table_name;
7. What is a subquery, and how do you use it?
Subquery: A query nested inside another query
SELECT * FROM table_name
WHERE column_name = (SELECT column_name FROM another_table WHERE condition);
Till then keep learning and keep exploring 🙌
❤5👏2👍1
Since many of you were asking me to send Data Science Session
📌So we have come with a session for you!! 👨🏻💻 👩🏻💻
This will help you to speed up your job hunting process 💪
Register here
👇👇
https://go.acciojob.com/RYFvdU
Only limited free slots are available so Register Now
📌So we have come with a session for you!! 👨🏻💻 👩🏻💻
This will help you to speed up your job hunting process 💪
Register here
👇👇
https://go.acciojob.com/RYFvdU
Only limited free slots are available so Register Now
❤2👏1
🎓 𝗨𝗽𝘀𝗸𝗶𝗹𝗹 𝗪𝗶𝘁𝗵 𝗚𝗼𝘃𝗲𝗿𝗻𝗺𝗲𝗻𝘁-𝗔𝗽𝗽𝗿𝗼𝘃𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘 😍
Industry-approved Certifications to enhance employability
✅ AI & ML
✅ Cloud Computing
✅ Cybersecurity
✅ Data Analytics & More!
Earn industry-recognized certificates and boost your career 🚀
𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/3ImMFAB
Get the Govt. of India Incentives on course completion🏆
Industry-approved Certifications to enhance employability
✅ AI & ML
✅ Cloud Computing
✅ Cybersecurity
✅ Data Analytics & More!
Earn industry-recognized certificates and boost your career 🚀
𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/3ImMFAB
Get the Govt. of India Incentives on course completion🏆
❤1
✅ Resume Tips for Data Science Roles 📄💼
Your resume is your first impression — make it clear, concise, and confident with these tips:
1. Keep It One Page (for beginners)
⦁ Recruiters spend 6–10 seconds glancing through.
⦁ Use crisp bullet points, no long paragraphs.
⦁ Focus on relevant data science experience.
2. Strong Summary at the Top
Example:
“Aspiring Data Scientist with hands-on experience in Python, Pandas, and Machine Learning. Built 5+ real-world projects including house price prediction and sentiment analysis.”
3. Highlight Technical Skills
Separate Skills section:
⦁ Languages: Python, SQL
⦁ Libraries: Pandas, NumPy, Matplotlib, Scikit-learn
⦁ Tools: Jupyter, VS Code, Git, Tableau
⦁ Concepts: EDA, Regression, Classification, Data Cleaning
4. Showcase Projects (with results)
Each project: 2–3 bullet points
⦁ “Built linear regression model predicting house prices with 85% accuracy using Scikit-learn.”
⦁ “Cleaned & visualized 10K+ rows of sales data with Pandas & Seaborn.”
Include GitHub links.
5. Education & Certifications
Include:
⦁ Degree (any field)
⦁ Online certifications (Coursera, Kaggle, etc.)
⦁ Mention course projects or capstones
6. Quantify Everything
Instead of “Analyzed data”, write:
“Analyzed 20K+ customer rows to identify churn factors, improving model performance by 12%.”
7. Customize for Each Job
⦁ Match keywords from job descriptions.
⦁ Use role-specific terms like “classification model,” “data pipeline.”
💬 React ❤️ for more!
Data Science Learning Series:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Learn Python:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Your resume is your first impression — make it clear, concise, and confident with these tips:
1. Keep It One Page (for beginners)
⦁ Recruiters spend 6–10 seconds glancing through.
⦁ Use crisp bullet points, no long paragraphs.
⦁ Focus on relevant data science experience.
2. Strong Summary at the Top
Example:
“Aspiring Data Scientist with hands-on experience in Python, Pandas, and Machine Learning. Built 5+ real-world projects including house price prediction and sentiment analysis.”
3. Highlight Technical Skills
Separate Skills section:
⦁ Languages: Python, SQL
⦁ Libraries: Pandas, NumPy, Matplotlib, Scikit-learn
⦁ Tools: Jupyter, VS Code, Git, Tableau
⦁ Concepts: EDA, Regression, Classification, Data Cleaning
4. Showcase Projects (with results)
Each project: 2–3 bullet points
⦁ “Built linear regression model predicting house prices with 85% accuracy using Scikit-learn.”
⦁ “Cleaned & visualized 10K+ rows of sales data with Pandas & Seaborn.”
Include GitHub links.
5. Education & Certifications
Include:
⦁ Degree (any field)
⦁ Online certifications (Coursera, Kaggle, etc.)
⦁ Mention course projects or capstones
6. Quantify Everything
Instead of “Analyzed data”, write:
“Analyzed 20K+ customer rows to identify churn factors, improving model performance by 12%.”
7. Customize for Each Job
⦁ Match keywords from job descriptions.
⦁ Use role-specific terms like “classification model,” “data pipeline.”
💬 React ❤️ for more!
Data Science Learning Series:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Learn Python:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
❤5