๐ Roadmap to Master Data Science in 60 Days! ๐๐ค
๐ Week 1โ2: Python & Data Handling Basics
- Day 1โ5: Python fundamentals โ variables, loops, functions, lists, dictionaries
- Day 6โ10: NumPy & Pandas โ arrays, data cleaning, filtering, data manipulation
๐ Week 3โ4: Data Analysis & Visualization
- Day 11โ15: Data analysis โ EDA (Exploratory Data Analysis), statistics basics, data preprocessing
- Day 16โ20: Data visualization โ Matplotlib, Seaborn, charts, dashboards, storytelling with data
๐ Week 5โ6: Machine Learning Fundamentals
- Day 21โ25: ML concepts โ supervised vs unsupervised learning, regression, classification
- Day 26โ30: ML algorithms โ Linear Regression, Logistic Regression, Decision Trees, KNN
๐ Week 7โ8: Advanced ML & Model Building
- Day 31โ35: Model evaluation โ train/test split, cross-validation, accuracy, precision, recall
- Day 36โ40: Scikit-learn, feature engineering, model tuning, clustering (K-Means)
๐ Week 9: SQL & Real-World Data Skills
- Day 41โ45: SQL โ SELECT, WHERE, JOIN, GROUP BY, subqueries
- Day 46โ50: Working with real datasets, Kaggle practice, data pipelines basics
๐ Final Days: Projects + Deployment
- Day 51โ60:
โ Build 2โ3 projects (sales prediction, customer segmentation, recommendation system)
โ Create portfolio on GitHub
โ Learn basics of model deployment (Streamlit/Flask)
โ Prepare for data science interviews
โญ Bonus Tip: Focus more on projects than theory โ companies hire for practical skills.
Double Tap โฅ๏ธ For Detailed Explanation of Each Topic
๐ Week 1โ2: Python & Data Handling Basics
- Day 1โ5: Python fundamentals โ variables, loops, functions, lists, dictionaries
- Day 6โ10: NumPy & Pandas โ arrays, data cleaning, filtering, data manipulation
๐ Week 3โ4: Data Analysis & Visualization
- Day 11โ15: Data analysis โ EDA (Exploratory Data Analysis), statistics basics, data preprocessing
- Day 16โ20: Data visualization โ Matplotlib, Seaborn, charts, dashboards, storytelling with data
๐ Week 5โ6: Machine Learning Fundamentals
- Day 21โ25: ML concepts โ supervised vs unsupervised learning, regression, classification
- Day 26โ30: ML algorithms โ Linear Regression, Logistic Regression, Decision Trees, KNN
๐ Week 7โ8: Advanced ML & Model Building
- Day 31โ35: Model evaluation โ train/test split, cross-validation, accuracy, precision, recall
- Day 36โ40: Scikit-learn, feature engineering, model tuning, clustering (K-Means)
๐ Week 9: SQL & Real-World Data Skills
- Day 41โ45: SQL โ SELECT, WHERE, JOIN, GROUP BY, subqueries
- Day 46โ50: Working with real datasets, Kaggle practice, data pipelines basics
๐ Final Days: Projects + Deployment
- Day 51โ60:
โ Build 2โ3 projects (sales prediction, customer segmentation, recommendation system)
โ Create portfolio on GitHub
โ Learn basics of model deployment (Streamlit/Flask)
โ Prepare for data science interviews
โญ Bonus Tip: Focus more on projects than theory โ companies hire for practical skills.
Double Tap โฅ๏ธ For Detailed Explanation of Each Topic
1โค23๐ฅ2๐ฅฐ2๐1
๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Boost your tech skills with globally recognized Microsoft certifications:
๐น Generative AI
๐น Azure AI Fundamentals
๐น Power BI
๐น Computer Vision with Azure AI
๐น Azure Developer Associate
๐น Azure Security Engineer
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4qgtrxU
๐ Get Certified | ๐ 100% Free
Boost your tech skills with globally recognized Microsoft certifications:
๐น Generative AI
๐น Azure AI Fundamentals
๐น Power BI
๐น Computer Vision with Azure AI
๐น Azure Developer Associate
๐น Azure Security Engineer
๐๐ป๐ฟ๐ผ๐น๐น ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4qgtrxU
๐ Get Certified | ๐ 100% Free
โค1
โ Power BI alone wonโt make you Data Analyst
โ Power BI cannot get you a 18 LPA job offer
โ Power BI cannot be mastered in 2 days
โ Power BI is not just colorful dashboard
โ Power BI is not simple โdrag and dropโ
โ Power BI isnโt for Data Analysts only
But hereโs what Power BI can do:
โ๏ธ Power BI can save your reporting time
โ๏ธ Power BI keeps your confidential data safe
โ๏ธ Power BI helps you say bye to Pivot Tables
โ๏ธ Power BI makes your report easy to consume
โ๏ธ Power BI can update your dashboard with a single click
โ๏ธ Power BI handles heavy data without testing your patience
โ๏ธ Power BI is the next level for people whose work depends on Excel
I can go on and on, but you get the point.
Wrong expectations -> Wrong results
Right expectations -> Amazing results
โ Power BI cannot get you a 18 LPA job offer
โ Power BI cannot be mastered in 2 days
โ Power BI is not just colorful dashboard
โ Power BI is not simple โdrag and dropโ
โ Power BI isnโt for Data Analysts only
But hereโs what Power BI can do:
โ๏ธ Power BI can save your reporting time
โ๏ธ Power BI keeps your confidential data safe
โ๏ธ Power BI helps you say bye to Pivot Tables
โ๏ธ Power BI makes your report easy to consume
โ๏ธ Power BI can update your dashboard with a single click
โ๏ธ Power BI handles heavy data without testing your patience
โ๏ธ Power BI is the next level for people whose work depends on Excel
I can go on and on, but you get the point.
Wrong expectations -> Wrong results
Right expectations -> Amazing results
โค8
Today, let's start with the first topic of Data Science Roadmap:
๐ Python Fundamentals (Variables Data Types)
๐ This is the foundation of data science.
๐น 1. What is Python?
Python is a simple and powerful programming language used for:
โ Data analysis
โ Machine learning
โ AI
โ Automation
โ Web development
๐ Data scientists use Python because itโs easy and has powerful libraries.
๐น 2. Variables in Python
Variables store data values.
โ Syntax
name = "Ajay"
age = 25
salary = 50000
๐ No need to declare data type separately.
โ Rules:
โ Cannot start with numbers โ โ 1name
โ Case-sensitive โ age โ Age
โ Use meaningful names
๐น 3. Basic Data Types (Very Important)
โ 1. Integer (int) โ Whole numbers
x = 10
โ 2. Float โ Decimal numbers
price = 99.99
โ 3. String (str) โ Text
name = "Data Scientist"
โ 4. Boolean (bool) โ True/False
is_passed = True
๐น 4. Check Data Type
x = 10
print(type(x))
Output: <class 'int'>
๐น 5. Simple Practice (Must Do)
Try running this:
name = "Rahul"
age = 23
height = 5.9
is_student = True
print(name)
print(age)
print(type(height))
๐ฏ Todayโs Goal
โ Understand variables
โ Learn data types
โ Run Python code at least once
๐ Use: Google Colab / Jupyter Notebook / VS Code.
Double Tap โฅ๏ธ For More
๐ Python Fundamentals (Variables Data Types)
๐ This is the foundation of data science.
๐น 1. What is Python?
Python is a simple and powerful programming language used for:
โ Data analysis
โ Machine learning
โ AI
โ Automation
โ Web development
๐ Data scientists use Python because itโs easy and has powerful libraries.
๐น 2. Variables in Python
Variables store data values.
โ Syntax
name = "Ajay"
age = 25
salary = 50000
๐ No need to declare data type separately.
โ Rules:
โ Cannot start with numbers โ โ 1name
โ Case-sensitive โ age โ Age
โ Use meaningful names
๐น 3. Basic Data Types (Very Important)
โ 1. Integer (int) โ Whole numbers
x = 10
โ 2. Float โ Decimal numbers
price = 99.99
โ 3. String (str) โ Text
name = "Data Scientist"
โ 4. Boolean (bool) โ True/False
is_passed = True
๐น 4. Check Data Type
x = 10
print(type(x))
Output: <class 'int'>
๐น 5. Simple Practice (Must Do)
Try running this:
name = "Rahul"
age = 23
height = 5.9
is_student = True
print(name)
print(age)
print(type(height))
๐ฏ Todayโs Goal
โ Understand variables
โ Learn data types
โ Run Python code at least once
๐ Use: Google Colab / Jupyter Notebook / VS Code.
Double Tap โฅ๏ธ For More
โค19
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ถ๐ ๐ผ๐ป๐ฒ ๐ผ๐ณ ๐๐ต๐ฒ ๐บ๐ผ๐๐ ๐ถ๐ป-๐ฑ๐ฒ๐บ๐ฎ๐ป๐ฑ ๐๐ธ๐ถ๐น๐น๐ ๐๐ผ๐ฑ๐ฎ๐๐
Join the FREE Masterclass happening in Hyderabad | Pune | Noida
๐ฅ Land High-Paying Jobs with weekly hiring drives
๐ Hands-on Training + Real Industry Projects
๐ฏ 100% Placement Assistance
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ ๐:-
๐น Hyderabad :- https://pdlink.in/4kFhjn3
๐น Pune:- https://pdlink.in/45p4GrC
๐น Noida :- https://linkpd.in/DaNoida
Hurry Up ๐โโ๏ธ! Limited seats are available.
Join the FREE Masterclass happening in Hyderabad | Pune | Noida
๐ฅ Land High-Paying Jobs with weekly hiring drives
๐ Hands-on Training + Real Industry Projects
๐ฏ 100% Placement Assistance
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ ๐:-
๐น Hyderabad :- https://pdlink.in/4kFhjn3
๐น Pune:- https://pdlink.in/45p4GrC
๐น Noida :- https://linkpd.in/DaNoida
Hurry Up ๐โโ๏ธ! Limited seats are available.
โค1
Which of the following is a valid variable name in Python?
Anonymous Quiz
6%
A) 1name
85%
B) name_1
5%
C) name-1
4%
D) @name
โค3
What will be the data type of this value?
x = 10.5
x = 10.5
Anonymous Quiz
4%
boolean
90%
float
4%
int
2%
string
โค2
Which function is used to check data type in Python?
Anonymous Quiz
17%
A) datatype()
5%
B) check()
65%
C) type()
13%
D) typeof()
โค1
Which data type represents True or False values?
Anonymous Quiz
5%
A) int
5%
B) str
5%
C) float
86%
D) bool
โค3
๐ ๐ญ๐ฌ๐ฌ% ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ | ๐๐ผ๐๐ ๐๐ฝ๐ฝ๐ฟ๐ผ๐๐ฒ๐ฑ๐
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ :- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
Get the Govt. of India Incentives on course completion
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ :- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
Get the Govt. of India Incentives on course completion
โค1
Now, let's move to the next topic of Data Science Roadmap
โ Python Operators
๐โก Operators help perform operations on variables and values.
๐น 1. Arithmetic Operators (Math Operations)
Used for calculations.
- Addition (5 + 2 = 7)
- Subtraction (5 - 2 = 3)
- Multiplication (5 * 2 = 10)
- Division (5 / 2 = 2.5)
- % Modulus (remainder) (5 % 2 = 1)
- Power (2 3 = 8)
- // Floor division (5 // 2 = 2)
โ Example:
๐น 2. Comparison Operators (Return True/False)
Used for decision making.
- == Equal
- != Not equal
- > Greater than
- < Less than
- >= Greater or equal
- <= Less or equal
โ Example:
๐น 3. Logical Operators
Used to combine conditions.
- and: Both conditions true
- or: At least one true
- not: Reverse result
โ Example:
๐น 4. Assignment Operators
Used to assign values.
๐น 5. Practice (Must Try)
๐ฏ Todayโs Goal
โ Learn arithmetic operations
โ Understand comparisons (True/False)
โ Use logical conditions
Double Tap โฅ๏ธ For More
โ Python Operators
๐โก Operators help perform operations on variables and values.
๐น 1. Arithmetic Operators (Math Operations)
Used for calculations.
- Addition (5 + 2 = 7)
- Subtraction (5 - 2 = 3)
- Multiplication (5 * 2 = 10)
- Division (5 / 2 = 2.5)
- % Modulus (remainder) (5 % 2 = 1)
- Power (2 3 = 8)
- // Floor division (5 // 2 = 2)
โ Example:
a = 10
b = 3
print(a + b)
print(a % b)
print(a ** b)
๐น 2. Comparison Operators (Return True/False)
Used for decision making.
- == Equal
- != Not equal
- > Greater than
- < Less than
- >= Greater or equal
- <= Less or equal
โ Example:
x = 5
print(x > 3) # True
print(x == 5) # True
๐น 3. Logical Operators
Used to combine conditions.
- and: Both conditions true
- or: At least one true
- not: Reverse result
โ Example:
age = 20
print(age > 18 and age < 30)
๐น 4. Assignment Operators
Used to assign values.
x = 5
x += 2 # x = x + 2
x -= 1
x *= 3
๐น 5. Practice (Must Try)
a = 15
b = 4
print(a + b)
print(a > b)
print(a % b)
print(a < 20 and b < 10)
๐ฏ Todayโs Goal
โ Learn arithmetic operations
โ Understand comparisons (True/False)
โ Use logical conditions
Double Tap โฅ๏ธ For More
โค6