Data Science & Machine Learning
74.5K subscribers
801 photos
2 videos
68 files
696 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
๐Ÿšจ ๐—™๐—œ๐—ก๐—”๐—Ÿ ๐—ฅ๐—˜๐— ๐—œ๐—ก๐——๐—˜๐—ฅ โ€” ๐——๐—˜๐—”๐——๐—Ÿ๐—œ๐—ก๐—˜ ๐—ง๐—ข๐— ๐—ข๐—ฅ๐—ฅ๐—ข๐—ช!

๐ŸŽ“ ๐—š๐—ฒ๐˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ณ๐—ฟ๐—ผ๐—บ ๐—œ๐—œ๐—งโ€™๐˜€, ๐—œ๐—œ๐— โ€™๐˜€ & ๐— ๐—œ๐—ง

Choose your track ๐Ÿ‘‡

Business Analytics with AI :- https://pdlink.in/4anta5e

ML with Python :- https://pdlink.in/3OernZ3

Digital Marketing & Analytics :- https://pdlink.in/4ctqjKM

AI & Data Science :- https://pdlink.in/4rczp3b

Data Analytics with AI :- https://pdlink.in/40818pJ

AI & ML :- https://pdlink.in/3Zy7JJY

๐Ÿ”ฅHurry..Up ........Last Few Slots Left
โค1
4 Career Paths In Data Analytics

1) Data Analyst:

Role: Data Analysts interpret data and provide actionable insights through reports and visualizations.

They focus on querying databases, analyzing trends, and creating dashboards to help businesses make data-driven decisions.

Skills: Proficiency in SQL, Excel, data visualization tools (like Tableau or Power BI), and a good grasp of statistics.

Typical Tasks: Generating reports, creating visualizations, identifying trends and patterns, and presenting findings to stakeholders.


2)Data Scientist:

Role: Data Scientists use advanced statistical techniques, machine learning algorithms, and programming to analyze and interpret complex data.

They develop models to predict future trends and solve intricate problems.
Skills: Strong programming skills (Python, R), knowledge of machine learning, statistical analysis, data manipulation, and data visualization.

Typical Tasks: Building predictive models, performing complex data analyses, developing machine learning algorithms, and working with big data technologies.


3)Business Intelligence (BI) Analyst:

Role: BI Analysts focus on leveraging data to help businesses make strategic decisions.

They create and manage BI tools and systems, analyze business performance, and provide strategic recommendations.

Skills: Experience with BI tools (such as Power BI, Tableau, or Qlik), strong analytical skills, and knowledge of business operations and strategy.

Typical Tasks: Designing and maintaining dashboards and reports, analyzing business performance metrics, and providing insights for strategic planning.

4)Data Engineer:

Role: Data Engineers build and maintain the infrastructure required for data generation, storage, and processing. They ensure that data pipelines are efficient and reliable, and they prepare data for analysis.

Skills: Proficiency in programming languages (such as Python, Java, or Scala), experience with database management systems (SQL and NoSQL), and knowledge of data warehousing and ETL (Extract, Transform, Load) processes.

Typical Tasks: Designing and building data pipelines, managing and optimizing databases, ensuring data quality, and collaborating with data scientists and analysts.

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you ๐Ÿ˜Š
โค3
๐ŸšจDo not miss this (Top FREE AI certificate courses)
Enroll now in these 50+ Free AI certification courses , available for a limited time: https://docs.google.com/spreadsheets/d/1k0XXLD2e8FnXgN2Ja_mG4MI7w1ImW5AF_JKWUscTyq8/edit?usp=sharing

LIFETIME ACCESS
Top FREE AI, ML, & Python Certificate courses which will help to boost resume & in getting better jobs.
โค2
๐—™๐—ฟ๐—ผ๐—บ ๐—ญ๐—˜๐—ฅ๐—ข ๐—ฐ๐—ผ๐—ฑ๐—ถ๐—ป๐—ด โžœ ๐—๐—ผ๐—ฏ-๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—ฒ๐—ฟ โšก

Full Stack Certification is all you need in 2026!

Companies donโ€™t want degrees anymore โ€” they want SKILLS ๐Ÿ’ผ

Master Full Stack Development & get ahead!

๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐๐จ๐ฐ๐Ÿ‘‡ :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!
๐Ÿš€ Key Skills for Aspiring Tech Specialists

๐Ÿ“Š Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques

๐Ÿง  Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks

๐Ÿ— Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools

๐Ÿค– Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus

๐Ÿง  Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning

๐Ÿคฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills

๐Ÿ”Š NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data

๐ŸŒŸ Embrace the world of data and AI, and become the architect of tomorrow's technology!
โค4
๐Ÿš€ Roadmap to Master Data Science in 60 Days! ๐Ÿ“Š๐Ÿค–

๐Ÿ“… Week 1โ€“2: Python & Data Handling Basics
- Day 1โ€“5: Python fundamentals โ€” variables, loops, functions, lists, dictionaries
- Day 6โ€“10: NumPy & Pandas โ€” arrays, data cleaning, filtering, data manipulation

๐Ÿ“… Week 3โ€“4: Data Analysis & Visualization
- Day 11โ€“15: Data analysis โ€” EDA (Exploratory Data Analysis), statistics basics, data preprocessing
- Day 16โ€“20: Data visualization โ€” Matplotlib, Seaborn, charts, dashboards, storytelling with data

๐Ÿ“… Week 5โ€“6: Machine Learning Fundamentals
- Day 21โ€“25: ML concepts โ€” supervised vs unsupervised learning, regression, classification
- Day 26โ€“30: ML algorithms โ€” Linear Regression, Logistic Regression, Decision Trees, KNN

๐Ÿ“… Week 7โ€“8: Advanced ML & Model Building
- Day 31โ€“35: Model evaluation โ€” train/test split, cross-validation, accuracy, precision, recall
- Day 36โ€“40: Scikit-learn, feature engineering, model tuning, clustering (K-Means)

๐Ÿ“… Week 9: SQL & Real-World Data Skills
- Day 41โ€“45: SQL โ€” SELECT, WHERE, JOIN, GROUP BY, subqueries
- Day 46โ€“50: Working with real datasets, Kaggle practice, data pipelines basics

๐Ÿ“… Final Days: Projects + Deployment
- Day 51โ€“60:
โ€“ Build 2โ€“3 projects (sales prediction, customer segmentation, recommendation system)
โ€“ Create portfolio on GitHub
โ€“ Learn basics of model deployment (Streamlit/Flask)
โ€“ Prepare for data science interviews

โญ Bonus Tip: Focus more on projects than theory โ€” companies hire for practical skills.

Double Tap โ™ฅ๏ธ For Detailed Explanation of Each Topic
1โค23๐Ÿ”ฅ2๐Ÿฅฐ2๐Ÿ‘1
๐ŸŽ“ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Boost your tech skills with globally recognized Microsoft certifications:

๐Ÿ”น Generative AI
๐Ÿ”น Azure AI Fundamentals
๐Ÿ”น Power BI
๐Ÿ”น Computer Vision with Azure AI
๐Ÿ”น Azure Developer Associate
๐Ÿ”น Azure Security Engineer

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:-

https://pdlink.in/4qgtrxU

๐ŸŽ“ Get Certified | ๐Ÿ†“ 100% Free
โค1
โŒ Power BI alone wonโ€™t make you Data Analyst
โŒ Power BI cannot get you a 18 LPA job offer
โŒ Power BI cannot be mastered in 2 days
โŒ Power BI is not just colorful dashboard
โŒ Power BI is not simple โ€œdrag and dropโ€
โŒ Power BI isnโ€™t for Data Analysts only

But hereโ€™s what Power BI can do:

โœ”๏ธ Power BI can save your reporting time
โœ”๏ธ Power BI keeps your confidential data safe
โœ”๏ธ Power BI helps you say bye to Pivot Tables
โœ”๏ธ Power BI makes your report easy to consume
โœ”๏ธ Power BI can update your dashboard with a single click
โœ”๏ธ Power BI handles heavy data without testing your patience
โœ”๏ธ Power BI is the next level for people whose work depends on Excel


I can go on and on, but you get the point.

Wrong expectations -> Wrong results
Right expectations -> Amazing results
โค8
Today, let's start with the first topic of Data Science Roadmap:

๐Ÿš€ Python Fundamentals (Variables Data Types)

๐Ÿ This is the foundation of data science.

๐Ÿ”น 1. What is Python?

Python is a simple and powerful programming language used for:
โœ… Data analysis
โœ… Machine learning
โœ… AI
โœ… Automation
โœ… Web development

๐Ÿ‘‰ Data scientists use Python because itโ€™s easy and has powerful libraries.

๐Ÿ”น 2. Variables in Python

Variables store data values.

โœ… Syntax
name = "Ajay"
age = 25
salary = 50000

๐Ÿ‘‰ No need to declare data type separately.

โœ… Rules:
โœ” Cannot start with numbers โ†’ โŒ 1name
โœ” Case-sensitive โ†’ age โ‰  Age
โœ” Use meaningful names

๐Ÿ”น 3. Basic Data Types (Very Important)
โœ… 1. Integer (int) โ€” Whole numbers
x = 10
โœ… 2. Float โ€” Decimal numbers
price = 99.99
โœ… 3. String (str) โ€” Text
name = "Data Scientist"
โœ… 4. Boolean (bool) โ€” True/False
is_passed = True

๐Ÿ”น 4. Check Data Type
x = 10
print(type(x))
Output: <class 'int'>

๐Ÿ”น 5. Simple Practice (Must Do)
Try running this:
name = "Rahul"
age = 23
height = 5.9
is_student = True
print(name)
print(age)
print(type(height))

๐ŸŽฏ Todayโ€™s Goal
โœ… Understand variables
โœ… Learn data types
โœ… Run Python code at least once

๐Ÿ‘‰ Use: Google Colab / Jupyter Notebook / VS Code.

Double Tap โ™ฅ๏ธ For More
โค18
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ถ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—บ๐—ผ๐˜€๐˜ ๐—ถ๐—ป-๐—ฑ๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐˜€๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜†๐Ÿ˜

Join the FREE Masterclass happening in Hyderabad | Pune | Noida

๐Ÿ”ฅ Land High-Paying Jobs with weekly hiring drives
๐Ÿ“Š Hands-on Training + Real Industry Projects
๐ŸŽฏ 100% Placement Assistance

๐—•๐—ผ๐—ผ๐—ธ ๐—ฎ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฒ๐—บ๐—ผ ๐Ÿ‘‡:-

๐Ÿ”น Hyderabad :- https://pdlink.in/4kFhjn3

๐Ÿ”น Pune:-  https://pdlink.in/45p4GrC

๐Ÿ”น Noida :-  https://linkpd.in/DaNoida

Hurry Up ๐Ÿƒโ€โ™‚๏ธ! Limited seats are available.
โค1
Which of the following is a valid variable name in Python?
Anonymous Quiz
6%
A) 1name
85%
B) name_1
5%
C) name-1
โค3
What will be the data type of this value?

x = 10.5
Anonymous Quiz
4%
boolean
90%
float
4%
int
2%
string
โค2
Which function is used to check data type in Python?
Anonymous Quiz
17%
A) datatype()
5%
B) check()
64%
C) type()
14%
D) typeof()
โค1
Which data type represents True or False values?
Anonymous Quiz
4%
A) int
4%
B) str
5%
C) float
86%
D) bool
โค3
๐Ÿš€ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ | ๐—š๐—ผ๐˜ƒ๐˜ ๐—”๐—ฝ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ๐—ฑ๐Ÿ˜

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ :- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

Get the Govt. of India Incentives on course completion