๐ Complete Roadmap to Become a Data Scientist in 5 Months
๐ Week 1-2: Fundamentals
โ Day 1-3: Introduction to Data Science, its applications, and roles.
โ Day 4-7: Brush up on Python programming ๐.
โ Day 8-10: Learn basic statistics ๐ and probability ๐ฒ.
๐ Week 3-4: Data Manipulation & Visualization
๐ Day 11-15: Master Pandas for data manipulation.
๐ Day 16-20: Learn Matplotlib & Seaborn for data visualization.
๐ค Week 5-6: Machine Learning Foundations
๐ฌ Day 21-25: Introduction to scikit-learn.
๐ Day 26-30: Learn Linear & Logistic Regression.
๐ Week 7-8: Advanced Machine Learning
๐ณ Day 31-35: Explore Decision Trees & Random Forests.
๐ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
๐ง Week 9-10: Deep Learning
๐ค Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
๐ธ Day 46-50: Learn CNNs & RNNs for image & text data.
๐ Week 11-12: Data Engineering
๐ Day 51-55: Learn SQL & Databases.
๐งน Day 56-60: Data Preprocessing & Cleaning.
๐ Week 13-14: Model Evaluation & Optimization
๐ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
๐ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
๐ Week 15-16: Big Data & Tools
๐ Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
โ๏ธ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
๐ Week 17-18: Deployment & Production
๐ Day 81-85: Deploy models using Flask or FastAPI.
๐ฆ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
๐ฏ Week 19-20: Specialization
๐ Day 91-95: Choose NLP or Computer Vision, based on your interest.
๐ Week 21-22: Projects & Portfolio
๐ Day 96-100: Work on Personal Data Science Projects.
๐ฌ Week 23-24: Soft Skills & Networking
๐ค Day 101-105: Improve Communication & Presentation Skills.
๐ Day 106-110: Attend Online Meetups & Forums.
๐ฏ Week 25-26: Interview Preparation
๐ป Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
๐ Day 116-120: Review your projects & prepare for discussions.
๐จโ๐ป Week 27-28: Apply for Jobs
๐ฉ Day 121-125: Start applying for Entry-Level Data Scientist positions.
๐ค Week 29-30: Interviews
๐ Day 126-130: Attend Interviews & Practice Whiteboard Problems.
๐ Week 31-32: Continuous Learning
๐ฐ Day 131-135: Stay updated with the Latest Data Science Trends.
๐ Week 33-34: Accepting Offers
๐ Day 136-140: Evaluate job offers & Negotiate Your Salary.
๐ข Week 35-36: Settling In
๐ฏ Day 141-150: Start your New Data Science Job, adapt & keep learning!
๐ Enjoy Learning & Build Your Dream Career in Data Science! ๐๐ฅ
๐ Week 1-2: Fundamentals
โ Day 1-3: Introduction to Data Science, its applications, and roles.
โ Day 4-7: Brush up on Python programming ๐.
โ Day 8-10: Learn basic statistics ๐ and probability ๐ฒ.
๐ Week 3-4: Data Manipulation & Visualization
๐ Day 11-15: Master Pandas for data manipulation.
๐ Day 16-20: Learn Matplotlib & Seaborn for data visualization.
๐ค Week 5-6: Machine Learning Foundations
๐ฌ Day 21-25: Introduction to scikit-learn.
๐ Day 26-30: Learn Linear & Logistic Regression.
๐ Week 7-8: Advanced Machine Learning
๐ณ Day 31-35: Explore Decision Trees & Random Forests.
๐ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
๐ง Week 9-10: Deep Learning
๐ค Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
๐ธ Day 46-50: Learn CNNs & RNNs for image & text data.
๐ Week 11-12: Data Engineering
๐ Day 51-55: Learn SQL & Databases.
๐งน Day 56-60: Data Preprocessing & Cleaning.
๐ Week 13-14: Model Evaluation & Optimization
๐ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
๐ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
๐ Week 15-16: Big Data & Tools
๐ Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
โ๏ธ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
๐ Week 17-18: Deployment & Production
๐ Day 81-85: Deploy models using Flask or FastAPI.
๐ฆ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
๐ฏ Week 19-20: Specialization
๐ Day 91-95: Choose NLP or Computer Vision, based on your interest.
๐ Week 21-22: Projects & Portfolio
๐ Day 96-100: Work on Personal Data Science Projects.
๐ฌ Week 23-24: Soft Skills & Networking
๐ค Day 101-105: Improve Communication & Presentation Skills.
๐ Day 106-110: Attend Online Meetups & Forums.
๐ฏ Week 25-26: Interview Preparation
๐ป Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
๐ Day 116-120: Review your projects & prepare for discussions.
๐จโ๐ป Week 27-28: Apply for Jobs
๐ฉ Day 121-125: Start applying for Entry-Level Data Scientist positions.
๐ค Week 29-30: Interviews
๐ Day 126-130: Attend Interviews & Practice Whiteboard Problems.
๐ Week 31-32: Continuous Learning
๐ฐ Day 131-135: Stay updated with the Latest Data Science Trends.
๐ Week 33-34: Accepting Offers
๐ Day 136-140: Evaluate job offers & Negotiate Your Salary.
๐ข Week 35-36: Settling In
๐ฏ Day 141-150: Start your New Data Science Job, adapt & keep learning!
๐ Enjoy Learning & Build Your Dream Career in Data Science! ๐๐ฅ
โค13
Python Learning Plan in 2025
|-- Week 1: Introduction to Python
| |-- Python Basics
| | |-- What is Python?
| | |-- Installing Python
| | |-- Introduction to IDEs (Jupyter, VS Code)
| |-- Setting up Python Environment
| | |-- Anaconda Setup
| | |-- Virtual Environments
| | |-- Basic Syntax and Data Types
| |-- First Python Program
| | |-- Writing and Running Python Scripts
| | |-- Basic Input/Output
| | |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
| |-- Control Structures
| | |-- Conditional Statements (if, elif, else)
| | |-- Loops (for, while)
| | |-- Comprehensions
| |-- Functions
| | |-- Defining Functions
| | |-- Function Arguments and Return Values
| | |-- Lambda Functions
| |-- Modules and Packages
| | |-- Importing Modules
| | |-- Standard Library Overview
| | |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
| |-- Data Structures
| | |-- Lists, Tuples, and Sets
| | |-- Dictionaries
| | |-- Collections Module
| |-- File Handling
| | |-- Reading and Writing Files
| | |-- Working with CSV and JSON
| | |-- Context Managers
| |-- Error Handling
| | |-- Exceptions
| | |-- Try, Except, Finally
| | |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
| |-- OOP Basics
| | |-- Classes and Objects
| | |-- Attributes and Methods
| | |-- Inheritance
| |-- Advanced OOP
| | |-- Polymorphism
| | |-- Encapsulation
| | |-- Magic Methods and Operator Overloading
| |-- Design Patterns
| | |-- Singleton
| | |-- Factory
| | |-- Observer
|
|-- Week 5: Python for Data Analysis
| |-- NumPy
| | |-- Arrays and Vectorization
| | |-- Indexing and Slicing
| | |-- Mathematical Operations
| |-- Pandas
| | |-- DataFrames and Series
| | |-- Data Cleaning and Manipulation
| | |-- Merging and Joining Data
| |-- Matplotlib and Seaborn
| | |-- Basic Plotting
| | |-- Advanced Visualizations
| | |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
| |-- Web Development
| | |-- Flask Basics
| | |-- Django Basics
| |-- Data Science and Machine Learning
| | |-- Scikit-Learn
| | |-- TensorFlow and Keras
| |-- Automation and Scripting
| | |-- Automating Tasks with Python
| | |-- Web Scraping with BeautifulSoup and Scrapy
| |-- APIs and RESTful Services
| | |-- Working with REST APIs
| | |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
| |-- Capstone Project
| | |-- Project Planning
| | |-- Data Collection and Preparation
| | |-- Building and Optimizing Models
| | |-- Creating and Publishing Reports
| |-- Case Studies
| | |-- Business Use Cases
| | |-- Industry-specific Solutions
| |-- Integration with Other Tools
| | |-- Python and SQL
| | |-- Python and Excel
| | |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
| |-- Python for Automation
| | |-- Automating Daily Tasks
| | |-- Scripting with Python
| |-- Advanced Python Topics
| | |-- Asyncio and Concurrency
| | |-- Advanced Data Structures
| |-- Continuing Education
| | |-- Advanced Python Techniques
| | |-- Community and Forums
| | |-- Keeping Up with Updates
|
|-- Resources and Community
| |-- Online Courses (Coursera, edX, Udemy)
| |-- Books (Automate the Boring Stuff, Python Crash Course)
| |-- Python Blogs and Podcasts
| |-- GitHub Repositories
| |-- Python Communities (Reddit, Stack Overflow)
Here you can find essential Python Interview Resources๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
|-- Week 1: Introduction to Python
| |-- Python Basics
| | |-- What is Python?
| | |-- Installing Python
| | |-- Introduction to IDEs (Jupyter, VS Code)
| |-- Setting up Python Environment
| | |-- Anaconda Setup
| | |-- Virtual Environments
| | |-- Basic Syntax and Data Types
| |-- First Python Program
| | |-- Writing and Running Python Scripts
| | |-- Basic Input/Output
| | |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
| |-- Control Structures
| | |-- Conditional Statements (if, elif, else)
| | |-- Loops (for, while)
| | |-- Comprehensions
| |-- Functions
| | |-- Defining Functions
| | |-- Function Arguments and Return Values
| | |-- Lambda Functions
| |-- Modules and Packages
| | |-- Importing Modules
| | |-- Standard Library Overview
| | |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
| |-- Data Structures
| | |-- Lists, Tuples, and Sets
| | |-- Dictionaries
| | |-- Collections Module
| |-- File Handling
| | |-- Reading and Writing Files
| | |-- Working with CSV and JSON
| | |-- Context Managers
| |-- Error Handling
| | |-- Exceptions
| | |-- Try, Except, Finally
| | |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
| |-- OOP Basics
| | |-- Classes and Objects
| | |-- Attributes and Methods
| | |-- Inheritance
| |-- Advanced OOP
| | |-- Polymorphism
| | |-- Encapsulation
| | |-- Magic Methods and Operator Overloading
| |-- Design Patterns
| | |-- Singleton
| | |-- Factory
| | |-- Observer
|
|-- Week 5: Python for Data Analysis
| |-- NumPy
| | |-- Arrays and Vectorization
| | |-- Indexing and Slicing
| | |-- Mathematical Operations
| |-- Pandas
| | |-- DataFrames and Series
| | |-- Data Cleaning and Manipulation
| | |-- Merging and Joining Data
| |-- Matplotlib and Seaborn
| | |-- Basic Plotting
| | |-- Advanced Visualizations
| | |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
| |-- Web Development
| | |-- Flask Basics
| | |-- Django Basics
| |-- Data Science and Machine Learning
| | |-- Scikit-Learn
| | |-- TensorFlow and Keras
| |-- Automation and Scripting
| | |-- Automating Tasks with Python
| | |-- Web Scraping with BeautifulSoup and Scrapy
| |-- APIs and RESTful Services
| | |-- Working with REST APIs
| | |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
| |-- Capstone Project
| | |-- Project Planning
| | |-- Data Collection and Preparation
| | |-- Building and Optimizing Models
| | |-- Creating and Publishing Reports
| |-- Case Studies
| | |-- Business Use Cases
| | |-- Industry-specific Solutions
| |-- Integration with Other Tools
| | |-- Python and SQL
| | |-- Python and Excel
| | |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
| |-- Python for Automation
| | |-- Automating Daily Tasks
| | |-- Scripting with Python
| |-- Advanced Python Topics
| | |-- Asyncio and Concurrency
| | |-- Advanced Data Structures
| |-- Continuing Education
| | |-- Advanced Python Techniques
| | |-- Community and Forums
| | |-- Keeping Up with Updates
|
|-- Resources and Community
| |-- Online Courses (Coursera, edX, Udemy)
| |-- Books (Automate the Boring Stuff, Python Crash Course)
| |-- Python Blogs and Podcasts
| |-- GitHub Repositories
| |-- Python Communities (Reddit, Stack Overflow)
Here you can find essential Python Interview Resources๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more resources like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค16๐1
Where Each Programming Language Shines ๐๐จ๐ปโ๐ป
โฏ C โ OS Development, Embedded Systems, Game Engines
โฏ C++ โ Game Development, High-Performance Applications, Financial Systems
โฏ Java โ Enterprise Software, Android Development, Backend Systems
โฏ C# โ Game Development (Unity), Windows Applications, Enterprise Software
โฏ Python โ AI/ML, Data Science, Web Development, Automation
โฏ JavaScript โ Frontend Web Development, Full-Stack Apps, Game Development
โฏ Golang โ Cloud Services, Networking, High-Performance APIs
โฏ Swift โ iOS/macOS App Development
โฏ Kotlin โ Android Development, Backend Services
โฏ PHP โ Web Development (WordPress, Laravel)
โฏ Ruby โ Web Development (Ruby on Rails), Prototyping
โฏ Rust โ Systems Programming, High-Performance Computing, Blockchain
โฏ Lua โ Game Scripting (Roblox, WoW), Embedded Systems
โฏ R โ Data Science, Statistics, Bioinformatics
โฏ SQL โ Database Management, Data Analytics
โฏ TypeScript โ Scalable Web Applications, Large JavaScript Projects
โฏ Node.js โ Backend Development, Real-Time Applications
โฏ React โ Modern Web Applications, Interactive UIs
โฏ Vue โ Lightweight Frontend Development, SPAs
โฏ Django โ Scalable Web Applications, AI/ML Backend
โฏ Laravel โ Full-Stack PHP Development
โฏ Blazor โ Web Apps with .NET
โฏ Spring Boot โ Enterprise Java Applications, Microservices
โฏ Ruby on Rails โ Startup Web Apps, MVP Development
โฏ HTML/CSS โ Web Design, UI Development
โฏ GIT โ Version Control, Collaboration
โฏ Linux โ Server Management, Security, DevOps
โฏ DevOps โ Infrastructure Automation, CI/CD
โฏ CI/CD โ Continuous Deployment & Testing
โฏ Docker โ Containerization, Cloud Deployments
โฏ Kubernetes โ Scalable Cloud Orchestration
โฏ Microservices โ Distributed Systems, Scalable Backends
โฏ Selenium โ Web Automation Testing
โฏ Playwright โ Modern Browser Automation
React โค๏ธ for more
โฏ C โ OS Development, Embedded Systems, Game Engines
โฏ C++ โ Game Development, High-Performance Applications, Financial Systems
โฏ Java โ Enterprise Software, Android Development, Backend Systems
โฏ C# โ Game Development (Unity), Windows Applications, Enterprise Software
โฏ Python โ AI/ML, Data Science, Web Development, Automation
โฏ JavaScript โ Frontend Web Development, Full-Stack Apps, Game Development
โฏ Golang โ Cloud Services, Networking, High-Performance APIs
โฏ Swift โ iOS/macOS App Development
โฏ Kotlin โ Android Development, Backend Services
โฏ PHP โ Web Development (WordPress, Laravel)
โฏ Ruby โ Web Development (Ruby on Rails), Prototyping
โฏ Rust โ Systems Programming, High-Performance Computing, Blockchain
โฏ Lua โ Game Scripting (Roblox, WoW), Embedded Systems
โฏ R โ Data Science, Statistics, Bioinformatics
โฏ SQL โ Database Management, Data Analytics
โฏ TypeScript โ Scalable Web Applications, Large JavaScript Projects
โฏ Node.js โ Backend Development, Real-Time Applications
โฏ React โ Modern Web Applications, Interactive UIs
โฏ Vue โ Lightweight Frontend Development, SPAs
โฏ Django โ Scalable Web Applications, AI/ML Backend
โฏ Laravel โ Full-Stack PHP Development
โฏ Blazor โ Web Apps with .NET
โฏ Spring Boot โ Enterprise Java Applications, Microservices
โฏ Ruby on Rails โ Startup Web Apps, MVP Development
โฏ HTML/CSS โ Web Design, UI Development
โฏ GIT โ Version Control, Collaboration
โฏ Linux โ Server Management, Security, DevOps
โฏ DevOps โ Infrastructure Automation, CI/CD
โฏ CI/CD โ Continuous Deployment & Testing
โฏ Docker โ Containerization, Cloud Deployments
โฏ Kubernetes โ Scalable Cloud Orchestration
โฏ Microservices โ Distributed Systems, Scalable Backends
โฏ Selenium โ Web Automation Testing
โฏ Playwright โ Modern Browser Automation
React โค๏ธ for more
โค18๐2
Essential Topics to Master Data Science Interviews: ๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science game! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science game! ๐
ENJOY LEARNING ๐๐
โค18๐1
๐๐ฅ ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ๐ป ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐๐๐ถ๐น๐ฑ๐ฒ๐ฟ โ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ
Master the most in-demand AI skill in todayโs job market: building autonomous AI systems.
In Ready Tensorโs free, project-first program, youโll create three portfolio-ready projects using ๐๐ฎ๐ป๐ด๐๐ต๐ฎ๐ถ๐ป, ๐๐ฎ๐ป๐ด๐๐ฟ๐ฎ๐ฝ๐ต, and vector databases โ and deploy production-ready agents that employers will notice.
Includes guided lectures, videos, and code.
๐๐ฟ๐ฒ๐ฒ. ๐ฆ๐ฒ๐น๐ณ-๐ฝ๐ฎ๐ฐ๐ฒ๐ฑ. ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ-๐ฐ๐ต๐ฎ๐ป๐ด๐ถ๐ป๐ด.
๐ Apply now: https://go.readytensor.ai/cert-549-agentic-ai-certification
Master the most in-demand AI skill in todayโs job market: building autonomous AI systems.
In Ready Tensorโs free, project-first program, youโll create three portfolio-ready projects using ๐๐ฎ๐ป๐ด๐๐ต๐ฎ๐ถ๐ป, ๐๐ฎ๐ป๐ด๐๐ฟ๐ฎ๐ฝ๐ต, and vector databases โ and deploy production-ready agents that employers will notice.
Includes guided lectures, videos, and code.
๐๐ฟ๐ฒ๐ฒ. ๐ฆ๐ฒ๐น๐ณ-๐ฝ๐ฎ๐ฐ๐ฒ๐ฑ. ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ-๐ฐ๐ต๐ฎ๐ป๐ด๐ถ๐ป๐ด.
๐ Apply now: https://go.readytensor.ai/cert-549-agentic-ai-certification
www.readytensor.ai
Agentic AI Developer Certification Program by Ready Tensor
Learn to build chatbots, AI assistants, and multi-agent systems with Ready Tensor's free, self-paced, and beginner-friendly Agentic AI Developer Certification. View the full program guide and how to get certified.
โค2๐1
ML interview Question ๐
What is Quantization in machine learning?
Quantization the process of reducing the precision of the numbers used to represent a model's parameters, such as weights and activations. This is often done by converting 32-bit floating-point numbers (commonly used in training) to lower precision formats, like 16-bit or 8-bit integers.
Quantization is primarily used during model inference to:
1. Reduce model size: Lower precision numbers require less memory.
2. Improve computational efficiency: Operations on lower-precision data types are faster and require less power.
3. Speed up inference: Smaller models can be loaded faster, improving performance on edge devices like smartphones or IoT devices.
Quantization can lead to a small loss in model accuracy, as reducing precision can introduce rounding errors. But in many cases, the trade-off between accuracy and efficiency is worthwhile, especially for deployment on resource-constrained devices.
There are different types of quantization:
1. Post-training quantization: Applied after the model has been trained.
2.Quantization-aware training (QAT): Takes quantization into account during the training process to minimize the accuracy drop.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
What is Quantization in machine learning?
Quantization the process of reducing the precision of the numbers used to represent a model's parameters, such as weights and activations. This is often done by converting 32-bit floating-point numbers (commonly used in training) to lower precision formats, like 16-bit or 8-bit integers.
Quantization is primarily used during model inference to:
1. Reduce model size: Lower precision numbers require less memory.
2. Improve computational efficiency: Operations on lower-precision data types are faster and require less power.
3. Speed up inference: Smaller models can be loaded faster, improving performance on edge devices like smartphones or IoT devices.
Quantization can lead to a small loss in model accuracy, as reducing precision can introduce rounding errors. But in many cases, the trade-off between accuracy and efficiency is worthwhile, especially for deployment on resource-constrained devices.
There are different types of quantization:
1. Post-training quantization: Applied after the model has been trained.
2.Quantization-aware training (QAT): Takes quantization into account during the training process to minimize the accuracy drop.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
โค7๐1๐ฅ1
Data Scientist Roadmap ๐
๐ Python Basics
โ๐ Numpy & Pandas
โโ๐ Data Cleaning
โโโ๐ Data Visualization (Seaborn, Plotly)
โโโโ๐ Statistics & Probability
โโโโโ๐ Machine Learning (Sklearn)
โโโโโโ๐ Deep Learning (TensorFlow / PyTorch)
โโโโโโโ๐ Model Deployment
โโโโโโโโ๐ Real-World Projects
โโโโโโโโโโ Apply for Data Science Roles
React "โค๏ธ" For More
๐ Python Basics
โ๐ Numpy & Pandas
โโ๐ Data Cleaning
โโโ๐ Data Visualization (Seaborn, Plotly)
โโโโ๐ Statistics & Probability
โโโโโ๐ Machine Learning (Sklearn)
โโโโโโ๐ Deep Learning (TensorFlow / PyTorch)
โโโโโโโ๐ Model Deployment
โโโโโโโโ๐ Real-World Projects
โโโโโโโโโโ Apply for Data Science Roles
React "โค๏ธ" For More
โค42๐2
โ
8-Week Beginner Roadmap to Learn Data Science ๐๐
๐๏ธ Week 1: Python Basics
Goal: Understand basic Python syntax & data types
Topics: Variables, lists, dictionaries, loops, functions
Tools: Jupyter Notebook / Google Colab
Mini Project: Calculator or number guessing game
๐๏ธ Week 2: Python for Data
Goal: Learn data manipulation with NumPy & Pandas
Topics: Arrays, DataFrames, filtering, groupby, joins
Tools: Pandas, NumPy
Mini Project: Analyze a CSV (e.g., sales or weather data)
๐๏ธ Week 3: Data Visualization
Goal: Visualize data trends & patterns
Topics: Line, bar, scatter, histograms, heatmaps
Tools: Matplotlib, Seaborn
Mini Project: Visualize COVID or stock market data
๐๏ธ Week 4: Statistics & Probability Basics
Goal: Understand core statistical concepts
Topics: Mean, median, mode, std dev, probability, distributions
Tools: Python, SciPy
Mini Project: Analyze survey data & generate insights
๐๏ธ Week 5: Exploratory Data Analysis (EDA)
Goal: Draw insights from real datasets
Topics: Data cleaning, outliers, correlation
Tools: Pandas, Seaborn
Mini Project: EDA on Titanic or Iris dataset
๐๏ธ Week 6: Intro to Machine Learning
Goal: Learn ML workflow & basic algorithms
Topics: Supervised vs unsupervised, train/test split
Tools: Scikit-learn
Mini Project: Predict house prices (Linear Regression)
๐๏ธ Week 7: Classification Models
Goal: Understand and apply classification
Topics: Logistic Regression, KNN, Decision Trees
Tools: Scikit-learn
Mini Project: Titanic survival prediction
๐๏ธ Week 8: Capstone Project + Deployment
Goal: Apply all concepts in one end-to-end project
Ideas: Sales prediction, Movie rating analysis, Customer churn detection
Tools: Streamlit (for simple web app)
Bonus: Upload your project on GitHub
๐ก Tips:
โฆ Practice daily on platforms like Kaggle or Google Colab
โฆ Join beginner projects on GitHub
โฆ Share progress on LinkedIn or X (Twitter)
๐ฌ Tap โค๏ธ for the detailed explanation of each topic!
๐๏ธ Week 1: Python Basics
Goal: Understand basic Python syntax & data types
Topics: Variables, lists, dictionaries, loops, functions
Tools: Jupyter Notebook / Google Colab
Mini Project: Calculator or number guessing game
๐๏ธ Week 2: Python for Data
Goal: Learn data manipulation with NumPy & Pandas
Topics: Arrays, DataFrames, filtering, groupby, joins
Tools: Pandas, NumPy
Mini Project: Analyze a CSV (e.g., sales or weather data)
๐๏ธ Week 3: Data Visualization
Goal: Visualize data trends & patterns
Topics: Line, bar, scatter, histograms, heatmaps
Tools: Matplotlib, Seaborn
Mini Project: Visualize COVID or stock market data
๐๏ธ Week 4: Statistics & Probability Basics
Goal: Understand core statistical concepts
Topics: Mean, median, mode, std dev, probability, distributions
Tools: Python, SciPy
Mini Project: Analyze survey data & generate insights
๐๏ธ Week 5: Exploratory Data Analysis (EDA)
Goal: Draw insights from real datasets
Topics: Data cleaning, outliers, correlation
Tools: Pandas, Seaborn
Mini Project: EDA on Titanic or Iris dataset
๐๏ธ Week 6: Intro to Machine Learning
Goal: Learn ML workflow & basic algorithms
Topics: Supervised vs unsupervised, train/test split
Tools: Scikit-learn
Mini Project: Predict house prices (Linear Regression)
๐๏ธ Week 7: Classification Models
Goal: Understand and apply classification
Topics: Logistic Regression, KNN, Decision Trees
Tools: Scikit-learn
Mini Project: Titanic survival prediction
๐๏ธ Week 8: Capstone Project + Deployment
Goal: Apply all concepts in one end-to-end project
Ideas: Sales prediction, Movie rating analysis, Customer churn detection
Tools: Streamlit (for simple web app)
Bonus: Upload your project on GitHub
๐ก Tips:
โฆ Practice daily on platforms like Kaggle or Google Colab
โฆ Join beginner projects on GitHub
โฆ Share progress on LinkedIn or X (Twitter)
๐ฌ Tap โค๏ธ for the detailed explanation of each topic!
โค32๐5๐ฅฐ2๐2
๐๏ธ Python Basics You Should Know ๐
โ 1. Variables & Data Types
Variables store data. Data types show what kind of data it is.
๐น Use
โ 2. Lists and Tuples
โฆ List = changeable collection
โฆ Tuple = fixed collection (cannot change items)
โ 3. Dictionaries
Store data as key-value pairs.
โ 4. Conditional Statements (if-else)
Make decisions.
๐น Use
โ 5. Loops
Repeat code.
โฆ For Loop โ fixed repeats
โฆ While Loop โ repeats while true
โ 6. Functions
Reusable code blocks.
๐น Return result:
โ 7. Input / Output
Get user input and show messages.
๐งช Mini Projects
1. Number Guessing Game
2. To-Do List
๐ ๏ธ Recommended Tools
โฆ Google Colab (online)
โฆ Jupyter Notebook
โฆ Python IDLE or VS Code
๐ก Practice a bit daily, start simple, and focus on basics โ they matter most!
Data Science Roadmap: https://t.me/datasciencefun/3730
Double Tap โฅ๏ธ For More
โ 1. Variables & Data Types
Variables store data. Data types show what kind of data it is.
# String (text)
name = "Alice"
# Integer (whole number)
age = 25
# Float (decimal)
height = 5.6
# Boolean (True/False)
is_student = True
๐น Use
type() to check data type:print(type(name)) # <class 'str'>
โ 2. Lists and Tuples
โฆ List = changeable collection
fruits = ["apple", "banana", "cherry"]
print(fruits) # banana
fruits.append("orange") # add item
โฆ Tuple = fixed collection (cannot change items)
colors = ("red", "green", "blue")
print(colors) # redโ 3. Dictionaries
Store data as key-value pairs.
person = {
"name": "John",
"age": 22,
"city": "Seoul"
}
print(person["name"]) # Johnโ 4. Conditional Statements (if-else)
Make decisions.
age = 20
if age >= 18:
print("Adult")
else:
print("Minor")
๐น Use
elif for multiple conditions:if age < 13:
print("Child")
elif age < 18:
print("Teenager")
else:
print("Adult")
โ 5. Loops
Repeat code.
โฆ For Loop โ fixed repeats
for i in range(3):
print("Hello", i)
โฆ While Loop โ repeats while true
count = 1
while count <= 3:
print("Count is", count)
count += 1
โ 6. Functions
Reusable code blocks.
def greet(name):
print("Hello", name)
greet("Alice") # Hello Alice
๐น Return result:
def add(a, b):
return a + b
print(add(3, 5)) # 8
โ 7. Input / Output
Get user input and show messages.
name = input("Enter your name: ")
print("Hi", name)๐งช Mini Projects
1. Number Guessing Game
import random
num = random.randint(1, 10)
guess = int(input("Guess a number (1-10): "))
if guess == num:
print("Correct!")
else:
print("Wrong, number was", num)
2. To-Do List
todo = []
todo.append("Buy milk")
todo.append("Study Python")
print(todo)
๐ ๏ธ Recommended Tools
โฆ Google Colab (online)
โฆ Jupyter Notebook
โฆ Python IDLE or VS Code
๐ก Practice a bit daily, start simple, and focus on basics โ they matter most!
Data Science Roadmap: https://t.me/datasciencefun/3730
Double Tap โฅ๏ธ For More
โค15๐4๐ฅฐ2๐2
Python for Data Science: NumPy & Pandas ๐๐
๐งฎ Step 1: Learn NumPy (for numbers and arrays)
What is NumPy?
A fast Python library for working with numbers and arrays.
โค 1. What is an array?
Like a list of numbers:
โค 2. Why NumPy over normal lists?
Faster for math operations:
โค 3. Cool NumPy tricks:
Key Topics:
โฆ Arrays are like faster, memory-efficient lists
โฆ Element-wise operations:
โฆ Slicing and indexing:
โฆ Broadcasting: operations on arrays with different shapes
โฆ Useful functions:
โโโโโโโโ
๐ Step 2: Learn Pandas (for tables like Excel)
What is Pandas?
Python tool to read, clean & analyze data โ like Excel but supercharged.
โค 1. Whatโs a DataFrame?
Like an Excel sheet, rows & columns.
โค 2. Check data info:
โค 3. Get a column:
โค 4. Filter rows:
โค 5. Group data:
Average price by category:
โค 6. Merge datasets:
โค 7. Handle missing data:
โโโโโโโโ
๐ก Beginner Tips:
โฆ Use Google Colab (free, no setup)
โฆ Try small tasks like:
โฆ Show top products
โฆ Filter sales > $500
โฆ Find missing data
โฆ Practice daily, donโt just memorize
โโโโโโโโ
๐ ๏ธ Mini Project: Analyze Sales Data
1. Load a CSV
2. Check number of rows
3. Find best-selling product
4. Calculate total revenue
5. Get average sales per region
Data Science Roadmap:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/1210
Double Tap โฅ๏ธ For More
๐งฎ Step 1: Learn NumPy (for numbers and arrays)
What is NumPy?
A fast Python library for working with numbers and arrays.
โค 1. What is an array?
Like a list of numbers:
[1, 2, 3, 4]import numpy as np
a = np.array([1, 2, 3, 4])
โค 2. Why NumPy over normal lists?
Faster for math operations:
a * 2 # array([2, 4, 6, 8])
โค 3. Cool NumPy tricks:
a.mean() # average
np.max(a) # max number
np.min(a) # min number
a[0:2] # slicing โ [1, 2]
Key Topics:
โฆ Arrays are like faster, memory-efficient lists
โฆ Element-wise operations:
a + b, a * 2โฆ Slicing and indexing:
a[0:2], a[:,1]โฆ Broadcasting: operations on arrays with different shapes
โฆ Useful functions:
np.mean(), np.std(), np.linspace(), np.random.randn()โโโโโโโโ
๐ Step 2: Learn Pandas (for tables like Excel)
What is Pandas?
Python tool to read, clean & analyze data โ like Excel but supercharged.
โค 1. Whatโs a DataFrame?
Like an Excel sheet, rows & columns.
import pandas as pd
df = pd.read_csv("sales.csv")
df.head() # first 5 rows
โค 2. Check data info:
df.info() # rows, columns, missing data
df.describe() # stats like mean, min, max
โค 3. Get a column:
df['product']
โค 4. Filter rows:
df[df['price'] > 100]
โค 5. Group data:
Average price by category:
df.groupby('category')['price'].mean()โค 6. Merge datasets:
merged = pd.merge(df1, df2, on='customer_id')
โค 7. Handle missing data:
df.isnull() # where missing
df.dropna() # drop missing rows
df.fillna(0) # fill missing with 0
โโโโโโโโ
๐ก Beginner Tips:
โฆ Use Google Colab (free, no setup)
โฆ Try small tasks like:
โฆ Show top products
โฆ Filter sales > $500
โฆ Find missing data
โฆ Practice daily, donโt just memorize
โโโโโโโโ
๐ ๏ธ Mini Project: Analyze Sales Data
1. Load a CSV
2. Check number of rows
3. Find best-selling product
4. Calculate total revenue
5. Get average sales per region
Data Science Roadmap:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/1210
Double Tap โฅ๏ธ For More
โค11๐2
Commonly used Power BI DAX functions:
DATE AND TIME FUNCTIONS:
-
-
-
AGGREGATE FUNCTIONS:
-
-
-
-
-
-
-
FILTER FUNCTIONS:
-
-
-
-
TIME INTELLIGENCE FUNCTIONS:
-
-
-
-
-
TEXT FUNCTIONS:
-
-
-
INFORMATION FUNCTIONS:
-
-
-
LOGICAL FUNCTIONS:
-
-
-
RELATIONSHIP FUNCTIONS:
-
-
-
Remember, DAX is more about logic than the formulas.
DATE AND TIME FUNCTIONS:
-
CALENDAR-
DATEDIFF-
TODAY, DAY, MONTH, QUARTER, YEARAGGREGATE FUNCTIONS:
-
SUM, SUMX, PRODUCT-
AVERAGE-
MIN, MAX-
COUNT-
COUNTROWS-
COUNTBLANK-
DISTINCTCOUNTFILTER FUNCTIONS:
-
CALCULATE-
FILTER-
ALL, ALLEXCEPT, ALLSELECTED, REMOVEFILTERS-
SELECTEDVALUETIME INTELLIGENCE FUNCTIONS:
-
DATESBETWEEN-
DATESMTD, DATESQTD, DATESYTD-
SAMEPERIODLASTYEAR-
PARALLELPERIOD-
TOTALMTD, TOTALQTD, TOTALYTDTEXT FUNCTIONS:
-
CONCATENATE-
FORMAT-
LEN, LEFT, RIGHTINFORMATION FUNCTIONS:
-
HASONEVALUE, HASONEFILTER-
ISBLANK, ISERROR, ISEMPTY-
CONTAINSLOGICAL FUNCTIONS:
-
AND, OR, IF, NOT-
TRUE, FALSE-
SWITCHRELATIONSHIP FUNCTIONS:
-
RELATED-
USERRELATIONSHIP-
RELATEDTABLERemember, DAX is more about logic than the formulas.
โ
Data Visualization with Matplotlib ๐
๐ Tools:
โฆ
โฆ
1๏ธโฃ Line Chart โ to show trends over time
2๏ธโฃ Bar Chart โ compare categories
3๏ธโฃ Pie Chart โ show proportions
4๏ธโฃ Histogram โ frequency distribution
5๏ธโฃ Scatter Plot โ relationship between variables
6๏ธโฃ Heatmap โ correlation matrix (with Seaborn)
๐ก Pro Tip: Customize titles, labels & colors for clarity and audience style!
Data Science Roadmap:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/1210
๐ฌ Tap โค๏ธ for more!
๐ Tools:
โฆ
matplotlib.pyplot โ Basic plotsโฆ
seaborn โ Cleaner, statistical plots1๏ธโฃ Line Chart โ to show trends over time
import matplotlib.pyplot as plt
days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri']
sales = [200, 450, 300, 500, 650]
plt.plot(days, sales, marker='o')
plt.title('Daily Sales')
plt.xlabel('Day')
plt.ylabel('Sales')
plt.grid(True)
plt.show()
2๏ธโฃ Bar Chart โ compare categories
products = ['A', 'B', 'C', 'D']
revenue = [1000, 1500, 700, 1200]
plt.bar(products, revenue, color='skyblue')
plt.title('Revenue by Product')
plt.xlabel('Product')
plt.ylabel('Revenue')
plt.show()
3๏ธโฃ Pie Chart โ show proportions
labels = ['iOS', 'Android', 'Others']
market_share = [40, 55, 5]
plt.pie(market_share, labels=labels, autopct='%1.1f%%', startangle=140)
plt.title('Mobile OS Market Share')
plt.axis('equal') # perfect circle
plt.show()
4๏ธโฃ Histogram โ frequency distribution
ages = [22, 25, 27, 30, 32, 35, 35, 40, 45, 50, 52, 60]
plt.hist(ages, bins=5, color='green', edgecolor='black')
plt.title('Age Distribution')
plt.xlabel('Age Groups')
plt.ylabel('Frequency')
plt.show()
5๏ธโฃ Scatter Plot โ relationship between variables
income = [30, 35, 40, 45, 50, 55, 60]
spending = [20, 25, 30, 32, 35, 40, 42]
plt.scatter(income, spending, color='red')
plt.title('Income vs Spending')
plt.xlabel('Income (k)')
plt.ylabel('Spending (k)')
plt.show()
6๏ธโฃ Heatmap โ correlation matrix (with Seaborn)
import seaborn as sns
import pandas as pd
data = {'Math': [90, 80, 85, 95],
'Science': [85, 89, 92, 88],
'English': [78, 75, 80, 85]}
df = pd.DataFrame(data)
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Subject Score Correlation')
plt.show()
๐ก Pro Tip: Customize titles, labels & colors for clarity and audience style!
Data Science Roadmap:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/1210
๐ฌ Tap โค๏ธ for more!
โค8๐1
โ
10 Python Code Snippets for Interviews & Practice ๐๐ง
1๏ธโฃ Find factorial (recursion):
2๏ธโฃ Find second largest number:
3๏ธโฃ Remove punctuation from string:
4๏ธโฃ Find common elements in two lists:
5๏ธโฃ Convert list to string:
6๏ธโฃ Reverse words in sentence:
7๏ธโฃ Check anagram:
8๏ธโฃ Get unique values from list of dicts:
9๏ธโฃ Create dict from range:
๐ Sort list of tuples by second item:
Learn Python: https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Find factorial (recursion):
def factorial(n):
return 1 if n == 0 else n * factorial(n - 1)
2๏ธโฃ Find second largest number:
nums = [10, 20, 30]
second = sorted(set(nums))[-2]
3๏ธโฃ Remove punctuation from string:
import string
s = "Hello, world!"
s_clean = s.translate(str.maketrans('', '', string.punctuation))
4๏ธโฃ Find common elements in two lists:
a = [1, 2, 3]
b = [2, 3, 4]
common = list(set(a) & set(b))
5๏ธโฃ Convert list to string:
words = ['Python', 'is', 'fun']
sentence = ' '.join(words)
6๏ธโฃ Reverse words in sentence:
s = "Hello World"
reversed_s = ' '.join(s.split()[::-1])
7๏ธโฃ Check anagram:
def is_anagram(a, b):
return sorted(a) == sorted(b)
8๏ธโฃ Get unique values from list of dicts:
data = [{'a':1}, {'a':2}, {'a':1}]
unique = set(d['a'] for d in data)9๏ธโฃ Create dict from range:
squares = {x: x*x for x in range(5)}๐ Sort list of tuples by second item:
pairs = [(1, 3), (2, 1)]
sorted_pairs = sorted(pairs, key=lambda x: x)
Learn Python: https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l
๐ฌ Tap โค๏ธ for more!
โค12๐ฅ1