Data Science & Machine Learning
72.6K subscribers
772 photos
2 videos
68 files
679 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Since many of you were asking me to send Data Science Session

๐Ÿ“ŒSo we have come with a session for you!! ๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป ๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป

This will help you to speed up your job hunting process ๐Ÿ’ช

Register here
๐Ÿ‘‡๐Ÿ‘‡
https://go.acciojob.com/RYFvdU

Only limited free slots are available so Register Now
โค3๐Ÿ‘1
Skills Needed To Become a Data Scientist
โค6๐Ÿ‘6
Difference between linear regression and logistic regression ๐Ÿ‘‡๐Ÿ‘‡

Linear regression and logistic regression are both types of statistical models used for prediction and modeling, but they have different purposes and applications.

Linear regression is used to model the relationship between a dependent variable and one or more independent variables. It is used when the dependent variable is continuous and can take any value within a range. The goal of linear regression is to find the best-fitting line that describes the relationship between the independent and dependent variables.

Logistic regression, on the other hand, is used when the dependent variable is binary or categorical. It is used to model the probability of a certain event occurring based on one or more independent variables. The output of logistic regression is a probability value between 0 and 1, which can be interpreted as the likelihood of the event happening.

Data Science Interview Resources
๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/coding/914624

Like for more ๐Ÿ˜„
โค8
TOP ML Interview Problems
โค8
๐Ÿš€ Complete Roadmap to Become a Data Scientist in 5 Months

๐Ÿ“… Week 1-2: Fundamentals
โœ… Day 1-3: Introduction to Data Science, its applications, and roles.
โœ… Day 4-7: Brush up on Python programming ๐Ÿ.
โœ… Day 8-10: Learn basic statistics ๐Ÿ“Š and probability ๐ŸŽฒ.

๐Ÿ” Week 3-4: Data Manipulation & Visualization
๐Ÿ“ Day 11-15: Master Pandas for data manipulation.
๐Ÿ“ˆ Day 16-20: Learn Matplotlib & Seaborn for data visualization.

๐Ÿค– Week 5-6: Machine Learning Foundations
๐Ÿ”ฌ Day 21-25: Introduction to scikit-learn.
๐Ÿ“Š Day 26-30: Learn Linear & Logistic Regression.

๐Ÿ— Week 7-8: Advanced Machine Learning
๐ŸŒณ Day 31-35: Explore Decision Trees & Random Forests.
๐Ÿ“Œ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.

๐Ÿง  Week 9-10: Deep Learning
๐Ÿค– Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
๐Ÿ“ธ Day 46-50: Learn CNNs & RNNs for image & text data.

๐Ÿ› Week 11-12: Data Engineering
๐Ÿ—„ Day 51-55: Learn SQL & Databases.
๐Ÿงน Day 56-60: Data Preprocessing & Cleaning.

๐Ÿ“Š Week 13-14: Model Evaluation & Optimization
๐Ÿ“ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
๐Ÿ“‰ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).

๐Ÿ— Week 15-16: Big Data & Tools
๐Ÿ˜ Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
โ˜๏ธ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).

๐Ÿš€ Week 17-18: Deployment & Production
๐Ÿ›  Day 81-85: Deploy models using Flask or FastAPI.
๐Ÿ“ฆ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).

๐ŸŽฏ Week 19-20: Specialization
๐Ÿ“ Day 91-95: Choose NLP or Computer Vision, based on your interest.

๐Ÿ† Week 21-22: Projects & Portfolio
๐Ÿ“‚ Day 96-100: Work on Personal Data Science Projects.

๐Ÿ’ฌ Week 23-24: Soft Skills & Networking
๐ŸŽค Day 101-105: Improve Communication & Presentation Skills.
๐ŸŒ Day 106-110: Attend Online Meetups & Forums.

๐ŸŽฏ Week 25-26: Interview Preparation
๐Ÿ’ป Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
๐Ÿ“‚ Day 116-120: Review your projects & prepare for discussions.

๐Ÿ‘จโ€๐Ÿ’ป Week 27-28: Apply for Jobs
๐Ÿ“ฉ Day 121-125: Start applying for Entry-Level Data Scientist positions.

๐ŸŽค Week 29-30: Interviews
๐Ÿ“ Day 126-130: Attend Interviews & Practice Whiteboard Problems.

๐Ÿ”„ Week 31-32: Continuous Learning
๐Ÿ“ฐ Day 131-135: Stay updated with the Latest Data Science Trends.

๐Ÿ† Week 33-34: Accepting Offers
๐Ÿ“ Day 136-140: Evaluate job offers & Negotiate Your Salary.

๐Ÿข Week 35-36: Settling In
๐ŸŽฏ Day 141-150: Start your New Data Science Job, adapt & keep learning!

๐ŸŽ‰ Enjoy Learning & Build Your Dream Career in Data Science! ๐Ÿš€๐Ÿ”ฅ
โค13
๐Ÿ”ฅ4โค1
Python Learning Plan in 2025

|-- Week 1: Introduction to Python
|   |-- Python Basics
|   |   |-- What is Python?
|   |   |-- Installing Python
|   |   |-- Introduction to IDEs (Jupyter, VS Code)
|   |-- Setting up Python Environment
|   |   |-- Anaconda Setup
|   |   |-- Virtual Environments
|   |   |-- Basic Syntax and Data Types
|   |-- First Python Program
|   |   |-- Writing and Running Python Scripts
|   |   |-- Basic Input/Output
|   |   |-- Simple Calculations
|
|-- Week 2: Core Python Concepts
|   |-- Control Structures
|   |   |-- Conditional Statements (if, elif, else)
|   |   |-- Loops (for, while)
|   |   |-- Comprehensions
|   |-- Functions
|   |   |-- Defining Functions
|   |   |-- Function Arguments and Return Values
|   |   |-- Lambda Functions
|   |-- Modules and Packages
|   |   |-- Importing Modules
|   |   |-- Standard Library Overview
|   |   |-- Creating and Using Packages
|
|-- Week 3: Advanced Python Concepts
|   |-- Data Structures
|   |   |-- Lists, Tuples, and Sets
|   |   |-- Dictionaries
|   |   |-- Collections Module
|   |-- File Handling
|   |   |-- Reading and Writing Files
|   |   |-- Working with CSV and JSON
|   |   |-- Context Managers
|   |-- Error Handling
|   |   |-- Exceptions
|   |   |-- Try, Except, Finally
|   |   |-- Custom Exceptions
|
|-- Week 4: Object-Oriented Programming
|   |-- OOP Basics
|   |   |-- Classes and Objects
|   |   |-- Attributes and Methods
|   |   |-- Inheritance
|   |-- Advanced OOP
|   |   |-- Polymorphism
|   |   |-- Encapsulation
|   |   |-- Magic Methods and Operator Overloading
|   |-- Design Patterns
|   |   |-- Singleton
|   |   |-- Factory
|   |   |-- Observer
|
|-- Week 5: Python for Data Analysis
|   |-- NumPy
|   |   |-- Arrays and Vectorization
|   |   |-- Indexing and Slicing
|   |   |-- Mathematical Operations
|   |-- Pandas
|   |   |-- DataFrames and Series
|   |   |-- Data Cleaning and Manipulation
|   |   |-- Merging and Joining Data
|   |-- Matplotlib and Seaborn
|   |   |-- Basic Plotting
|   |   |-- Advanced Visualizations
|   |   |-- Customizing Plots
|
|-- Week 6-8: Specialized Python Libraries
|   |-- Web Development
|   |   |-- Flask Basics
|   |   |-- Django Basics
|   |-- Data Science and Machine Learning
|   |   |-- Scikit-Learn
|   |   |-- TensorFlow and Keras
|   |-- Automation and Scripting
|   |   |-- Automating Tasks with Python
|   |   |-- Web Scraping with BeautifulSoup and Scrapy
|   |-- APIs and RESTful Services
|   |   |-- Working with REST APIs
|   |   |-- Building APIs with Flask/Django
|
|-- Week 9-11: Real-world Applications and Projects
|   |-- Capstone Project
|   |   |-- Project Planning
|   |   |-- Data Collection and Preparation
|   |   |-- Building and Optimizing Models
|   |   |-- Creating and Publishing Reports
|   |-- Case Studies
|   |   |-- Business Use Cases
|   |   |-- Industry-specific Solutions
|   |-- Integration with Other Tools
|   |   |-- Python and SQL
|   |   |-- Python and Excel
|   |   |-- Python and Power BI
|
|-- Week 12: Post-Project Learning
|   |-- Python for Automation
|   |   |-- Automating Daily Tasks
|   |   |-- Scripting with Python
|   |-- Advanced Python Topics
|   |   |-- Asyncio and Concurrency
|   |   |-- Advanced Data Structures
|   |-- Continuing Education
|   |   |-- Advanced Python Techniques
|   |   |-- Community and Forums
|   |   |-- Keeping Up with Updates
|
|-- Resources and Community
|   |-- Online Courses (Coursera, edX, Udemy)
|   |-- Books (Automate the Boring Stuff, Python Crash Course)
|   |-- Python Blogs and Podcasts
|   |-- GitHub Repositories
|   |-- Python Communities (Reddit, Stack Overflow)

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค16๐Ÿ‘1
Where Each Programming Language Shines ๐Ÿš€๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป

โฏ C โžŸ OS Development, Embedded Systems, Game Engines
โฏ C++ โžŸ Game Development, High-Performance Applications, Financial Systems
โฏ Java โžŸ Enterprise Software, Android Development, Backend Systems
โฏ C# โžŸ Game Development (Unity), Windows Applications, Enterprise Software
โฏ Python โžŸ AI/ML, Data Science, Web Development, Automation
โฏ JavaScript โžŸ Frontend Web Development, Full-Stack Apps, Game Development
โฏ Golang โžŸ Cloud Services, Networking, High-Performance APIs
โฏ Swift โžŸ iOS/macOS App Development
โฏ Kotlin โžŸ Android Development, Backend Services
โฏ PHP โžŸ Web Development (WordPress, Laravel)
โฏ Ruby โžŸ Web Development (Ruby on Rails), Prototyping
โฏ Rust โžŸ Systems Programming, High-Performance Computing, Blockchain
โฏ Lua โžŸ Game Scripting (Roblox, WoW), Embedded Systems
โฏ R โžŸ Data Science, Statistics, Bioinformatics
โฏ SQL โžŸ Database Management, Data Analytics
โฏ TypeScript โžŸ Scalable Web Applications, Large JavaScript Projects
โฏ Node.js โžŸ Backend Development, Real-Time Applications
โฏ React โžŸ Modern Web Applications, Interactive UIs
โฏ Vue โžŸ Lightweight Frontend Development, SPAs
โฏ Django โžŸ Scalable Web Applications, AI/ML Backend
โฏ Laravel โžŸ Full-Stack PHP Development
โฏ Blazor โžŸ Web Apps with .NET
โฏ Spring Boot โžŸ Enterprise Java Applications, Microservices
โฏ Ruby on Rails โžŸ Startup Web Apps, MVP Development
โฏ HTML/CSS โžŸ Web Design, UI Development
โฏ GIT โžŸ Version Control, Collaboration
โฏ Linux โžŸ Server Management, Security, DevOps
โฏ DevOps โžŸ Infrastructure Automation, CI/CD
โฏ CI/CD โžŸ Continuous Deployment & Testing
โฏ Docker โžŸ Containerization, Cloud Deployments
โฏ Kubernetes โžŸ Scalable Cloud Orchestration
โฏ Microservices โžŸ Distributed Systems, Scalable Backends
โฏ Selenium โžŸ Web Automation Testing
โฏ Playwright โžŸ Modern Browser Automation

React โค๏ธ for more
โค18๐Ÿ‘2
Essential Topics to Master Data Science Interviews: ๐Ÿš€

SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data science game! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค18๐Ÿ‘1
๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ
Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems.

In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, and vector databases โ€” and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
๐—™๐—ฟ๐—ฒ๐—ฒ. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐—ฑ. ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ-๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด.

๐Ÿ‘‰ Apply now: https://go.readytensor.ai/cert-549-agentic-ai-certification
โค2๐Ÿ‘1
ML interview Question ๐Ÿ“š

What is Quantization in machine learning?

Quantization the process of reducing the precision of the numbers used to represent a model's parameters, such as weights and activations. This is often done by converting 32-bit floating-point numbers (commonly used in training) to lower precision formats, like 16-bit or 8-bit integers.

Quantization is primarily used during model inference to:
1. Reduce model size: Lower precision numbers require less memory.
2. Improve computational efficiency: Operations on lower-precision data types are faster and require less power.
3. Speed up inference: Smaller models can be loaded faster, improving performance on edge devices like smartphones or IoT devices.

Quantization can lead to a small loss in model accuracy, as reducing precision can introduce rounding errors. But in many cases, the trade-off between accuracy and efficiency is worthwhile, especially for deployment on resource-constrained devices.

There are different types of quantization:
1. Post-training quantization: Applied after the model has been trained.
2.Quantization-aware training (QAT): Takes quantization into account during the training process to minimize the accuracy drop.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค7๐Ÿ‘1๐Ÿ”ฅ1
Data Scientist Roadmap ๐Ÿ“ˆ

๐Ÿ“‚ Python Basics
โˆŸ๐Ÿ“‚ Numpy & Pandas
โ€ƒโˆŸ๐Ÿ“‚ Data Cleaning
โ€ƒโ€ƒโˆŸ๐Ÿ“‚ Data Visualization (Seaborn, Plotly)
โ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Statistics & Probability
โ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Machine Learning (Sklearn)
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Deep Learning (TensorFlow / PyTorch)
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Model Deployment
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸ๐Ÿ“‚ Real-World Projects
โ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโ€ƒโˆŸโœ… Apply for Data Science Roles

React "โค๏ธ" For More
โค42๐Ÿ‘2
The Data Science Sandwich
๐Ÿ‘7โค4
โœ… 8-Week Beginner Roadmap to Learn Data Science ๐Ÿ“Š๐Ÿš€

๐Ÿ—“๏ธ Week 1: Python Basics
Goal: Understand basic Python syntax & data types
Topics: Variables, lists, dictionaries, loops, functions
Tools: Jupyter Notebook / Google Colab
Mini Project: Calculator or number guessing game

๐Ÿ—“๏ธ Week 2: Python for Data
Goal: Learn data manipulation with NumPy & Pandas
Topics: Arrays, DataFrames, filtering, groupby, joins
Tools: Pandas, NumPy
Mini Project: Analyze a CSV (e.g., sales or weather data)

๐Ÿ—“๏ธ Week 3: Data Visualization
Goal: Visualize data trends & patterns
Topics: Line, bar, scatter, histograms, heatmaps
Tools: Matplotlib, Seaborn
Mini Project: Visualize COVID or stock market data

๐Ÿ—“๏ธ Week 4: Statistics & Probability Basics
Goal: Understand core statistical concepts
Topics: Mean, median, mode, std dev, probability, distributions
Tools: Python, SciPy
Mini Project: Analyze survey data & generate insights

๐Ÿ—“๏ธ Week 5: Exploratory Data Analysis (EDA)
Goal: Draw insights from real datasets
Topics: Data cleaning, outliers, correlation
Tools: Pandas, Seaborn
Mini Project: EDA on Titanic or Iris dataset

๐Ÿ—“๏ธ Week 6: Intro to Machine Learning
Goal: Learn ML workflow & basic algorithms
Topics: Supervised vs unsupervised, train/test split
Tools: Scikit-learn
Mini Project: Predict house prices (Linear Regression)

๐Ÿ—“๏ธ Week 7: Classification Models
Goal: Understand and apply classification
Topics: Logistic Regression, KNN, Decision Trees
Tools: Scikit-learn
Mini Project: Titanic survival prediction

๐Ÿ—“๏ธ Week 8: Capstone Project + Deployment
Goal: Apply all concepts in one end-to-end project
Ideas: Sales prediction, Movie rating analysis, Customer churn detection
Tools: Streamlit (for simple web app)
Bonus: Upload your project on GitHub

๐Ÿ’ก Tips:
โฆ Practice daily on platforms like Kaggle or Google Colab
โฆ Join beginner projects on GitHub
โฆ Share progress on LinkedIn or X (Twitter)

๐Ÿ’ฌ Tap โค๏ธ for the detailed explanation of each topic!
โค32๐Ÿ‘5๐Ÿฅฐ2๐Ÿ‘2
๐Ÿ—“๏ธ Python Basics You Should Know ๐Ÿ

โœ… 1. Variables & Data Types 
Variables store data. Data types show what kind of data it is.

# String (text)
name = "Alice"

# Integer (whole number)
age = 25

# Float (decimal)
height = 5.6

# Boolean (True/False)
is_student = True

๐Ÿ”น Use type() to check data type:
print(type(name))  # <class 'str'>


โœ… 2. Lists and Tuples
โฆ List = changeable collection
fruits = ["apple", "banana", "cherry"]
print(fruits)  # banana
fruits.append("orange")  # add item

โฆ Tuple = fixed collection (cannot change items)
colors = ("red", "green", "blue")
print(colors)  # red


โœ… 3. Dictionaries 
Store data as key-value pairs.

person = {
  "name": "John",
  "age": 22,
  "city": "Seoul"
}
print(person["name"])  # John


โœ… 4. Conditional Statements (if-else) 
Make decisions.

age = 20
if age >= 18:
    print("Adult")
else:
    print("Minor")

๐Ÿ”น Use elif for multiple conditions:
if age < 13:
    print("Child")
elif age < 18:
    print("Teenager")
else:
    print("Adult")


โœ… 5. Loops 
Repeat code.

โฆ For Loop โ€“ fixed repeats
for i in range(3):
    print("Hello", i)

โฆ While Loop โ€“ repeats while true
count = 1
while count <= 3:
    print("Count is", count)
    count += 1


โœ… 6. Functions 
Reusable code blocks.

def greet(name):
    print("Hello", name)

greet("Alice")  # Hello Alice

๐Ÿ”น Return result:
def add(a, b):
    return a + b

print(add(3, 5))  # 8


โœ… 7. Input / Output 
Get user input and show messages.

name = input("Enter your name: ")
print("Hi", name)


๐Ÿงช Mini Projects

1. Number Guessing Game
import random
num = random.randint(1, 10)
guess = int(input("Guess a number (1-10): "))
if guess == num:
    print("Correct!")
else:
    print("Wrong, number was", num)


2. To-Do List
todo = []
todo.append("Buy milk")
todo.append("Study Python")
print(todo)


๐Ÿ› ๏ธ Recommended Tools
โฆ Google Colab (online)
โฆ Jupyter Notebook
โฆ Python IDLE or VS Code

๐Ÿ’ก Practice a bit daily, start simple, and focus on basics โ€” they matter most!

Data Science Roadmap: https://t.me/datasciencefun/3730

Double Tap โ™ฅ๏ธ For More
โค15๐Ÿ‘4๐Ÿฅฐ2๐Ÿ‘2
Python for Data Science: NumPy & Pandas ๐Ÿ“Š๐Ÿ

๐Ÿงฎ Step 1: Learn NumPy (for numbers and arrays)

What is NumPy? 
A fast Python library for working with numbers and arrays.

โžค 1. What is an array? 
Like a list of numbers: [1, 2, 3, 4]
import numpy as np
a = np.array([1, 2, 3, 4])


โžค 2. Why NumPy over normal lists? 
Faster for math operations:
a * 2  # array([2, 4, 6, 8])


โžค 3. Cool NumPy tricks:
a.mean()        # average  
np.max(a)       # max number 
np.min(a)       # min number 
a[0:2]          # slicing โ†’ [1, 2]


Key Topics:
โฆ Arrays are like faster, memory-efficient lists
โฆ Element-wise operations: a + b, a * 2
โฆ Slicing and indexing: a[0:2], a[:,1]
โฆ Broadcasting: operations on arrays with different shapes
โฆ Useful functions: np.mean(), np.std(), np.linspace(), np.random.randn()

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿ“Š Step 2: Learn Pandas (for tables like Excel)

What is Pandas? 
Python tool to read, clean & analyze data โ€” like Excel but supercharged.

โžค 1. Whatโ€™s a DataFrame? 
Like an Excel sheet, rows & columns.
import pandas as pd
df = pd.read_csv("sales.csv")
df.head()  # first 5 rows


โžค 2. Check data info:
df.info()       # rows, columns, missing data  
df.describe()   # stats like mean, min, max


โžค 3. Get a column:
df['product']


โžค 4. Filter rows:
df[df['price'] > 100]


โžค 5. Group data: 
Average price by category:
df.groupby('category')['price'].mean()


โžค 6. Merge datasets:
merged = pd.merge(df1, df2, on='customer_id')


โžค 7. Handle missing data:
df.isnull()      # where missing  
df.dropna()      # drop missing rows 
df.fillna(0)     # fill missing with 0


โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿ’ก Beginner Tips:
โฆ Use Google Colab (free, no setup)
โฆ Try small tasks like:
  โฆ  Show top products
  โฆ  Filter sales > $500
  โฆ  Find missing data
โฆ Practice daily, donโ€™t just memorize

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿ› ๏ธ Mini Project: Analyze Sales Data
1. Load a CSV
2. Check number of rows
3. Find best-selling product
4. Calculate total revenue
5. Get average sales per region

Data Science Roadmap: 
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/1210

Double Tap โ™ฅ๏ธ For More
โค11๐Ÿ‘2