🔬 Физики MIT сделали прорыв: обнаружили новый тип материала, который одновременно является сверхпроводником и магнитом.
Раньше считалось, что эти свойства несовместимы: сверхпроводимость «боится» магнитных полей.
Но в особой форме графита (rhombohedral) учёные нашли хиральный сверхпроводник — электроны образуют пары и начинают вращаться, создавая собственное магнитное поле.
🔥 Почему это важно:
- Это новая форма сверхпроводимости
- Возможный путь к топологическим квантовым компьютерам — устойчивым к ошибкам
- Открытие подтверждено на шести разных образцах
Материал может стать ключом к следующему поколению квантовых технологий.
Подробности
@data_math
Раньше считалось, что эти свойства несовместимы: сверхпроводимость «боится» магнитных полей.
Но в особой форме графита (rhombohedral) учёные нашли хиральный сверхпроводник — электроны образуют пары и начинают вращаться, создавая собственное магнитное поле.
🔥 Почему это важно:
- Это новая форма сверхпроводимости
- Возможный путь к топологическим квантовым компьютерам — устойчивым к ошибкам
- Открытие подтверждено на шести разных образцах
Материал может стать ключом к следующему поколению квантовых технологий.
Подробности
@data_math
🔥25❤5🤯4👍3🥰1
🧮 GPT-5 Pro выходит на новый уровень.
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: он взял статью по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска. GPT-5 Pro предложил доказательство, которое улучшило границу из оригинальной работы, и Бюбек лично проверил его корректность.
📄 В первой версии статьи было установлено:
🟢 если η < 1/L (L — параметр гладкости), кривая значений функции выпуклая;
🟢 если η > 1.75/L, существует контрпример.
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: он взял статью по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска. GPT-5 Pro предложил доказательство, которое улучшило границу из оригинальной работы, и Бюбек лично проверил его корректность.
📄 В первой версии статьи было установлено:
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍6🤮6🥰3🤔2