Forwarded from Machinelearning
Он провёл 14 месяцев в applied-команде, разрабатывая Codex — кодинг-агента, который за 7 недель прошёл путь от первой строки к публичному запуску. Он работал на Python, жег огромные GPU-бюджеты, спринтил с командой почти без выходных.
Автор уволился,чтобы сделать свой проект, но называет этот год самым интенсивным и полезным в карьере.
За год OpenAI выросла с 1000 до 3000 человек. Внутренние процессы постоянно перестраиваются, для разрабов Slack стал полноценным «офисом», а почта почти исчезла из работы.
В командах идеи идут снизу вверх — и кто первым закомитит свой код, тот и задаёт стандарт. Главная метрика успеха — не презентации, а работающий код.
Codex - это огромный монорепозиторий почти целиком сотоязий из Python кода. Все сервисы поднимаются через FastAPI, а данные проходят через Pydantic — это даёт простую валидацию и ускоряет разработку. В проекте есть немного Go и Rust в основном в сетевых компонентах, но это редкие исключения.
Codex сделали крошечной командой за 7 недель. Автор вспоминает бессонные ночи, утренние подъёмы и выходные в офисе. Команда была сильной, многие ушли от Цукерберга к Сэме— и это чувствуется по уровню инфраструктуры.
OpenAI —выгладит как странный гибрид: он подобен научному центру в стиле Лос-Аламоса, который случайно сделал самый хайповый продукт десятилетия. . Руководство комании активно отвечает в Slack, 600 000+ pull request'ов за 53 дня после запуска Codex!
OpenAI — это не просто «компания создавашая GPT». Это лаборатория, где безумная скорость сочетается с реальным и крутым продуктом. Они не боятся выкатывать новые фичи, не скрывают свой хаос и делают очень много интересного. Не идеальная система, но там правда делают вещи.
👉Полную статью можно почитать -здесь
@ai_machinelearning_big_data
#openai #ai #ml #llm #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥7😁1