Поступление в ШАД: даже одна попытка откроет путь к большим возможностям!
Попробовать поступить в Школу анализа данных Яндекса может каждый, кто увлечён Data Science: неважно, учитесь вы в вузе, работаете в IT или просто любите разбираться в сложном. Если вас тянет к задачам, над которыми ломают голову лучшие умы, — попробовать точно стоит!
В ШАДе вас ждёт не просто теория — здесь с первого дня погружаются в практику: осваивают сложные концепции машинного обучения, решают ИИ-задачи, которые вчера казались невозможными, и получают мощный буст для карьеры.
Создавать инновационные решения, продвигать науку, запускать стартапы или делиться опытом — всё это доступно выпускникам ШАДа! Если хотите стать одним из них, не теряйте времени — подайте заявку до 4 мая!
Классные плюшки: обучение бесплатное, а если в вашем городе нет филиала, заниматься можно онлайн. Не упустите шанс: попробуйте поступить и откройте перед собой новые горизонты!
Попробовать поступить в Школу анализа данных Яндекса может каждый, кто увлечён Data Science: неважно, учитесь вы в вузе, работаете в IT или просто любите разбираться в сложном. Если вас тянет к задачам, над которыми ломают голову лучшие умы, — попробовать точно стоит!
В ШАДе вас ждёт не просто теория — здесь с первого дня погружаются в практику: осваивают сложные концепции машинного обучения, решают ИИ-задачи, которые вчера казались невозможными, и получают мощный буст для карьеры.
Создавать инновационные решения, продвигать науку, запускать стартапы или делиться опытом — всё это доступно выпускникам ШАДа! Если хотите стать одним из них, не теряйте времени — подайте заявку до 4 мая!
Классные плюшки: обучение бесплатное, а если в вашем городе нет филиала, заниматься можно онлайн. Не упустите шанс: попробуйте поступить и откройте перед собой новые горизонты!
🔧 LMOps — исследовательская платформа Microsoft для работы с LLМ.
В данном проекте собраны ключевые разработки, включая Promptist и LLMA. Особый интерес представляет исследование in-context learning — авторы показали, что LLM неявно выполняют тонкую настройку через механизмы внимания.
Проект активно развивается: только за 2024 год вышло 6 статей на EMNLP с новыми методами retrieval-augmented generation и alignment.
🔗 GitHub
@data_analysis_ml
В данном проекте собраны ключевые разработки, включая Promptist и LLMA. Особый интерес представляет исследование in-context learning — авторы показали, что LLM неявно выполняют тонкую настройку через механизмы внимания.
Проект активно развивается: только за 2024 год вышло 6 статей на EMNLP с новыми методами retrieval-augmented generation и alignment.
🔗 GitHub
@data_analysis_ml
🗣 Dia — это новаяоткрытая модель текст‑в‑речь от Nari Labs с 1.6 млрд параметров, способная генерировать полноценный диалог с богатой экспрессией.
Ключевые возможности:
- Ультра‑реалистичный диалог. Генерация согласованных реплик двух «говорящих» персонажей, помеченных тэгами [S1] и [S2] в одном тексте.
- Эмоции и тон. Можно задавать тональность и интонацию через акустический запрос (audio prompt), а также управлять «невербалкой»: смех, кашель, вздохи и т. д.
- Voice cloning. Клонирование голоса по короткому образцу: подгрузите аудио и его транскрипт, и модель адаптируется под заданный тембр
GitHub
Модель написана на Python (100 % кода) с использованием PyTorch 2.0 и CUDA 12.6
Производительность и требования:
Полная версия требует ≈10 GB VRAM; в будущем планируется квантование модели.
Установка и запуск:
В интерфейсе Gradio сразу можно оценить разницу с ElevenLabs и Sesame CSM‑1B
Лицензия: Apache 2.0.
Dia отлично подходит для ML‑исследований в TTS: вы получаете открытые весовые файлы, гибкий API для скриптов и UI для быстрой проверки гипотез.
На данный момент Dia поддерживает генерацию речи только на английском языке
▪Demo
▪Github
▪HF
@data_analysis_ml
Ключевые возможности:
- Ультра‑реалистичный диалог. Генерация согласованных реплик двух «говорящих» персонажей, помеченных тэгами [S1] и [S2] в одном тексте.
- Эмоции и тон. Можно задавать тональность и интонацию через акустический запрос (audio prompt), а также управлять «невербалкой»: смех, кашель, вздохи и т. д.
- Voice cloning. Клонирование голоса по короткому образцу: подгрузите аудио и его транскрипт, и модель адаптируется под заданный тембр
GitHub
Модель написана на Python (100 % кода) с использованием PyTorch 2.0 и CUDA 12.6
Производительность и требования:
Полная версия требует ≈10 GB VRAM; в будущем планируется квантование модели.
Установка и запуск:
pip install git+https://github.com/nari-labs/dia.git
git clone https://github.com/nari-labs/dia.git
cd dia
uv run app.py
# или python app.pyВ интерфейсе Gradio сразу можно оценить разницу с ElevenLabs и Sesame CSM‑1B
Лицензия: Apache 2.0.
Dia отлично подходит для ML‑исследований в TTS: вы получаете открытые весовые файлы, гибкий API для скриптов и UI для быстрой проверки гипотез.
На данный момент Dia поддерживает генерацию речи только на английском языке
▪Demo
▪Github
▪HF
@data_analysis_ml
Forwarded from Machinelearning
Платные подписчики ChatGPT получили доступ к обновлённым моделям o3 и o4-mini в середине апреля, но пользователи быстро заметили странности: в длинных текстах появляются невидимые Unicode-символы - "Неразрывные пробелы" (U+202F). Они выглядят как обычные пробелы, но обнаруживаются через специальные инструменты.
Стартап RumiAI проанализировал ситуацию и предположил, что это попытка добавить водяные знаки для отслеживания ИИ-генерации. Однако символы легко удалить через поиск-замену, что ставит под вопрос их эффективность. Альтернативная версия — модели просто переняли форматирование из обучающих данных, где неразрывные пробелы используются для предотвращения разрывов строк.
OpenAI пока не дала никаких комментариев о причинах появления непечатных символов в результатах генерации.
winbuzzer.com
CharacterAI представила AvatarFX — систему, которая превращает изображения в говорящие, поющие и эмоционирущие видео за пару кликов. Технология сочетает фотореализм, синхронизацию движений губ, тела и рук, а также поддержку длинных роликов.
Под капотом — модифицированная архитектура DiT с flow-based диффузионными моделями, которые обучаются на разнообразных данных: от реалистичных людей до анимированных объектов. От конкурентов систему отличает работа с готовыми изображениями (не только текстовыми описаниями), поддержка нескольких говорящих в кадре и стабильность анимации.
Первыми доступ к AvatarFX получат подписчики CAI+. Остальным придется подождать или записаться в лист ожидания.
blog.character.ai
Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.
Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com
Physical Intelligence представила модель π0.5 — шаг к роботам, которые справляются с задачами в совершенно новых условиях. В отличие от предшественников, эта система на базе VLA обучалась на разнородных данных: от распознавания объектов до демо движений роботов. Это позволяет ей понимать не только как действовать, но и что именно делать в незнакомой среде — например, класть посуду в раковину, даже если раньше её не видела.
Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний. В планах — улучшение автономного обучения и запросов помощи в сложных ситуациях.
physicalintelligence.company
Академия киноискусств официально разрешила номинировать на «Оскар» фильмы, созданные с использованием ИИ. Как заявили организаторы, технологии генеративного ИИ не станут преимуществом или препятствием при оценке. Но теперь, чтобы голосовать в финале, члены Академии обязаны посмотреть все номинированные работы — это часть новых правил.
Несмотря на прогресс, споры вокруг ИИ не утихают. Актеры и сценаристы опасаются, что алгоритмы заменят их в создании сценариев или дубляжа. Хотя некоторые студии уже внедряют ИИ, аниматоры и режиссеры сомневаются: технологии пока не способны конкурировать с эмоциональной глубиной человеческой работы.
bbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
📎 X-AnyLabeling — профессиональный инструмент для автоматической разметки данных с интегрированным ИИ. Он представляет собой расширенную версию популярного AnyLabeling, дополненного промышленными функциями для профессионального использования.
Проект поддерживает работу как с изображениями, так и с видеофайлами, включая сложные задачи трекинга объектов в потоковом режиме. Все благодаря встроенной интеграции с более чем 20 современными моделями компьютерного зрения, а также гибкой системе работы с форматами аннотаций, охватывающая все основные стандарты отрасли
🤖 GitHub
@data_analysis_ml
Проект поддерживает работу как с изображениями, так и с видеофайлами, включая сложные задачи трекинга объектов в потоковом режиме. Все благодаря встроенной интеграции с более чем 20 современными моделями компьютерного зрения, а также гибкой системе работы с форматами аннотаций, охватывающая все основные стандарты отрасли
🤖 GitHub
@data_analysis_ml
🧪 Что сделали:
Разработчики взяли 1модель 5B параметров, дообучили её, используя LoRA-RL на качественно отобранных reasoning-задачах.
Потратили всего $9.
Получили +20% улучшения и 43% на бенчмарке AIME24.
✅ LoRA-RL > Full RL:
Дообучение через LoRA работает лучше, чем RL и гораздо дешевле.
Лучшие результаты модели совпадают не с пиками точности, а с моментами, когда модель меняет стиль ответа (формат/структуру), подстраиваясь под формат вознаграждения.
Модель обучается эффективно изменять структуру рассуждений, сохраняя своё "ядро знаний".
📌 Модели: https://huggingface.co/Tina-Yi
📌Сататья: https://arxiv.org/abs/2504.15777
📌Релиз: https://shangshangwang.notion.site/tina
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Магистратура от VK и МФТИ — буст для вашей карьеры в ИИ- и ML-сферах
С первого семестра на программе «Искусственный интеллект и социальные медиа» — практика в VK AI и обучение на реальных кейсах у экспертов компании.
После сможете претендовать на вакансии ИИ-исследователей, ML- и NLP-инженеров, дата-аналитиков, разработчиков ПО, рекомендательных систем и поисковых технологий.
Сомневаетесь? Протестируйте направление на программе для абитуриентов от VK Education. Это 2,5 месяца интенсивной практики. Выпускники получат рекомендательные письма от VK в портфолио.
🔗 Больше о программе
С первого семестра на программе «Искусственный интеллект и социальные медиа» — практика в VK AI и обучение на реальных кейсах у экспертов компании.
После сможете претендовать на вакансии ИИ-исследователей, ML- и NLP-инженеров, дата-аналитиков, разработчиков ПО, рекомендательных систем и поисковых технологий.
Сомневаетесь? Протестируйте направление на программе для абитуриентов от VK Education. Это 2,5 месяца интенсивной практики. Выпускники получат рекомендательные письма от VK в портфолио.
🔗 Больше о программе
Media is too big
VIEW IN TELEGRAM
🧩 Rivet — визуальная среда для создания сложных AI-агентов. Этот проект предлагает необычный подход к работе с LLM: вместо написания цепочек промптов в коде, вы собираете их как ноды в визуальном редакторе.
Особенность инструмента возможность встраивать созданные графы прямо в ваше приложение через TypeScript-библиотеку. Это превращает его из просто IDE в инструмент для production-разработки.
🤖 GitHub
@data_analysis_ml
Особенность инструмента возможность встраивать созданные графы прямо в ваше приложение через TypeScript-библиотеку. Это превращает его из просто IDE в инструмент для production-разработки.
🤖 GitHub
@data_analysis_ml
Мечтаете не просто разбираться в управлении данными, а использовать уникальные инструменты для работы с Big Data? Научитесь этому на бесплатном студкемпе Яндекс Образования и ИТМО по дата-инженерии!
🧠 Программа — интенсивная, актуальная, от лидеров индустрии. С 30 июня по 12 июля вы погрузитесь в мир распределённых хранилищ, микросервисной архитектуры, DataOps/MLOps и пайплайнов для сбора, анализа и визуализации данных. А ещё познакомитесь с технологиями, которые используют в крупных компаниях. В общем, получите реальные навыки, которые ценят на рынке!
🏙 Кампус — в самом центре Санкт-Петербурга. Несмотря на то, что студкемп проходит на базе ИТМО, заявки ждут от студентов из любых вузов и регионов России. Проезд и проживание будут оплачены Яндекс Образованием, так что вам останется сосредоточиться на главном — знаниях, опыте и новых возможностях.
🕐 Регистрация — открыта до 4 мая, но подать заявку можно уже сейчас! Если давно хотели пообщаться с топовыми айтишниками и почувствовать, каково это — учиться в одном из ведущих технических вузов, не откладывайте и заполняйте анкету по ссылке.
🧠 Программа — интенсивная, актуальная, от лидеров индустрии. С 30 июня по 12 июля вы погрузитесь в мир распределённых хранилищ, микросервисной архитектуры, DataOps/MLOps и пайплайнов для сбора, анализа и визуализации данных. А ещё познакомитесь с технологиями, которые используют в крупных компаниях. В общем, получите реальные навыки, которые ценят на рынке!
🏙 Кампус — в самом центре Санкт-Петербурга. Несмотря на то, что студкемп проходит на базе ИТМО, заявки ждут от студентов из любых вузов и регионов России. Проезд и проживание будут оплачены Яндекс Образованием, так что вам останется сосредоточиться на главном — знаниях, опыте и новых возможностях.
🕐 Регистрация — открыта до 4 мая, но подать заявку можно уже сейчас! Если давно хотели пообщаться с топовыми айтишниками и почувствовать, каково это — учиться в одном из ведущих технических вузов, не откладывайте и заполняйте анкету по ссылке.
🔍 AgentOps — платформа для мониторинга AI-агентов. Проект предлагает готовые интеграции с популярными фреймворками вроде LangChain и AutoGen — достаточно добавить всего пару строк кода для подключения мониторинга.
Интересный момент: система умеет отслеживать не только ошибки, но и затраты на LLM-запросы, что особенно актуально для продакшн-сред.
🤖 GitHub
Интересный момент: система умеет отслеживать не только ошибки, но и затраты на LLM-запросы, что особенно актуально для продакшн-сред.
🤖 GitHub
📌 Что такое Genie 2
Это автрорегрессивная латентно-диффузионная модель, обученная на огромном видеодатасете. Получив всего одно изображение-подсказку (например, кадр, сгенерированный Imagen 3), Genie 2 разворачивает целый виртуальный мир, в котором можно свободно перемещаться клавиатурой и мышью — как человеку, так и ИИ-агенту. Длительность консистентного эпизода достигает минуты.
Зачем она нужна
Главный барьер в исследованиях «телесных» (embodied) агентов — ограниченный спектр тренировочных сред. Genie 2 снимает это ограничение: модель способна бесконечно генерировать новые ландшафты, объекты, физику и взаимодействия, создавая «безграничный учебник» для RL-агентов.
В работе демонстрируется связка с SIMA — многоцелевым агентом DeepMind: тот получает языковые инструкции («открой синюю дверь») и действует внутри миров, созданных Genie 2. Такое сочетание позволяет быстро генерировать unseen-задачи для оценки или дообучения агентов.
Архитектура вкратце
Большой трансформер предсказывает следующий латент, учитывая прошлые кадры и действие.
Диффузионный декодер восстанавливает видимый кадр; classifier-free guidance повышает управление действием.
После дистилляции возможен real-time рендер с умеренным падением качества.
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
Нерйросети t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
Нерйросети t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
🧠 MaxKB — open-source ИИ-ассистент для бизнеса с RAG-движком. Это не просто чат-бот, а целая платформа для создания умных ассистентов на базе языковых моделей. Система умеет работать с документами, поддерживает сложные workflows и интеграцию через API.
Для своей работы инструмент использует комбинацию проверенных технологий: Django для бэкенда, LangChain для работы с LLM и pgvector для хранения эмбеддингов. Проект универсален, уже сейчас можно подключить как локальные модели, так и облачные.
🤖 GitHub
@data_analysis_ml
Для своей работы инструмент использует комбинацию проверенных технологий: Django для бэкенда, LangChain для работы с LLM и pgvector для хранения эмбеддингов. Проект универсален, уже сейчас можно подключить как локальные модели, так и облачные.
🤖 GitHub
@data_analysis_ml
🦉Модели Qwen 3 были опубликованы на ModelScope и затем были быстро удалены.
Теперь мы знаем параметры (0.6B / 1.7B / 4B / 8B / 30B-A3B / 238B ) и архитектуру.
> Tripled language coverage, новые архитектурные фишки и контекст до 32k — всё в одной серии моделей.
- 🔧 Новые техники: global-batch load balancing (MoE), qk layernorm, тонкая настройка гиперпараметров через scaling laws
- 🚀 Dens + Mixture-of-Experts линейка: разные размеры и режимы для любых задач
- 📈 Улучшена стабильность и качество выводов по сравнению с Qwen 2.5
🤖 Модель Qwen3-8B в цифрах
- Тип: causal language model
- Параметры всего: 8,2 B (6,95 B без эмбеддингов)
- Слои: 36
- Attention heads (GQA): 32 для Q и 8 для KV
- Контекстное окно: 32 768 токенов
- разработчикам — компактная, но мощная 8B-модель с длинным контекстом
- продвинутая MoE-архитектура
- это мультиязычная plug-and-play LLM и
https://modelscope.cn/collections/Qwen3-9743180bdc6b48
@data_analysis_ml
Теперь мы знаем параметры (0.6B / 1.7B / 4B / 8B / 30B-A3B / 238B ) и архитектуру.
> Tripled language coverage, новые архитектурные фишки и контекст до 32k — всё в одной серии моделей.
- 🔧 Новые техники: global-batch load balancing (MoE), qk layernorm, тонкая настройка гиперпараметров через scaling laws
- 🚀 Dens + Mixture-of-Experts линейка: разные размеры и режимы для любых задач
- 📈 Улучшена стабильность и качество выводов по сравнению с Qwen 2.5
🤖 Модель Qwen3-8B в цифрах
- Тип: causal language model
- Параметры всего: 8,2 B (6,95 B без эмбеддингов)
- Слои: 36
- Attention heads (GQA): 32 для Q и 8 для KV
- Контекстное окно: 32 768 токенов
- разработчикам — компактная, но мощная 8B-модель с длинным контекстом
- продвинутая MoE-архитектура
- это мультиязычная plug-and-play LLM и
https://modelscope.cn/collections/Qwen3-9743180bdc6b48
@data_analysis_ml
📄 Sparrow — интеллектуальный парсинг документов с помощью LLM. Этот проект сочетает компьютерное зрение и языковые модели для извлечения информации из счетов, банковских выписок и других сложных документов.
Инструмент имеет модульную архитектуру, позволяющую запускать pipelines как локально, так и в облаке через Hugging Face. Интересно, что Sparrow не просто распознает текст, а понимает семантику документов — система может извлекать конкретные поля по JSON-шаблону и даже обрабатывать многостраничные PDF с сохранением структуры.
🤖 GitHub
@data_analysis_ml
Инструмент имеет модульную архитектуру, позволяющую запускать pipelines как локально, так и в облаке через Hugging Face. Интересно, что Sparrow не просто распознает текст, а понимает семантику документов — система может извлекать конкретные поля по JSON-шаблону и даже обрабатывать многостраничные PDF с сохранением структуры.
🤖 GitHub
@data_analysis_ml
Forwarded from Machinelearning
В релиз вошли 2 MoE-модели и 6 Dense models (плотные модели), размером от 0.6B до 235B параметров.
🏆 Флагманская модель Qwen3-235B-A22B демонстрирует конкурентные результаты в задачах Кодина, математики и общих способностей, уверенно соперничая с передовыми моделями, такими как DeepSeek-R1, o1, o3-mini, Grok-3 и Gemini-2.5-Pro.
⚡ Небольшая MoE-модель Qwen3-30B-A3B превосходит QwQ-32B, испрльзуя в 10 раз больше параметров.
🔥 Компактная модель Qwen3-4B сопоставима по производительности с Qwen2.5-72B-Instruct.
@ai_machinelearning_big_data
#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
У DeepSeek на подходе новая версия (671B math/prover model), но это не R2
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
@data_analysis_ml
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
@data_analysis_ml
huggingface.co
deepseek-ai/DeepSeek-Prover-V2-671B · Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.