This media is not supported in your browser
VIEW IN TELEGRAM
👀 Стереосопоставление в реальном времени с помощью retinify
Особенности:
✅ Open Source
✅ Подходит для любой стереокамеры
✅ Реальное время на NVIDIA Jetson Orin Nano
С retinify даже недорогие OEM-стереокамеры или пара обычных камер превращаются в высокоточные AI-стереосистемы.
Когда retinify получает данные о глубине и расстояниях от стереокамеры, она формирует так называемое облако точек — набор трёхмерных точек в пространстве, которые представляют геометрию сцены (каждая точка имеет координаты X, Y, Z, иногда цвет).
Чтобы увидеть это облако точек на экране в наглядном виде (в 3D-просмотрщике), используют специальный инструмент или библиотеку.
В данном случае для этой задачи применяется Rerun (rerundotio) — платформа с удобным C++ API, которая позволяет быстро строить 3D-визуализации и анализировать результаты работы алгоритмов.
🚀 Попробовать можно на GitHub: https://github.com/retinify/retinify
@data_analysis_ml
Особенности:
✅ Open Source
✅ Подходит для любой стереокамеры
✅ Реальное время на NVIDIA Jetson Orin Nano
С retinify даже недорогие OEM-стереокамеры или пара обычных камер превращаются в высокоточные AI-стереосистемы.
Когда retinify получает данные о глубине и расстояниях от стереокамеры, она формирует так называемое облако точек — набор трёхмерных точек в пространстве, которые представляют геометрию сцены (каждая точка имеет координаты X, Y, Z, иногда цвет).
Чтобы увидеть это облако точек на экране в наглядном виде (в 3D-просмотрщике), используют специальный инструмент или библиотеку.
В данном случае для этой задачи применяется Rerun (rerundotio) — платформа с удобным C++ API, которая позволяет быстро строить 3D-визуализации и анализировать результаты работы алгоритмов.
🚀 Попробовать можно на GitHub: https://github.com/retinify/retinify
@data_analysis_ml
❤9👍5🔥3
📖 Вечернее чтение
Команда из DeepMind подготовила отличный материал о том, что нужно знать о работе с GPU.
- Разбор архитектуры NVIDIA GPU: SM, Tensor Cores, кеши, HBM.
- Сравнение GPU и TPU: гибкость против специализированной мощности.
- Как устроены GPU-кластеры и коллективные коммуникации.
- Roofline-анализ масштабирования LLM: data, tensor, expert, pipeline parallelism.
🔥 Если вы работаете с масштабированием моделей - мастрид.
👉 https://jax-ml.github.io/scaling-book/gpus/
@data_analysis_ml
Команда из DeepMind подготовила отличный материал о том, что нужно знать о работе с GPU.
- Разбор архитектуры NVIDIA GPU: SM, Tensor Cores, кеши, HBM.
- Сравнение GPU и TPU: гибкость против специализированной мощности.
- Как устроены GPU-кластеры и коллективные коммуникации.
- Roofline-анализ масштабирования LLM: data, tensor, expert, pipeline parallelism.
🔥 Если вы работаете с масштабированием моделей - мастрид.
👉 https://jax-ml.github.io/scaling-book/gpus/
@data_analysis_ml
❤11👍6🔥6
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 DeepConf — новый подход к мышлению ИИ
Учёные придумали новые метод Deep Think with Confidence (DeepConf).
Он позволяет модели сразу отбрасывать «слабые» варианты ответа и оставлять только те, в которых она уверена.
Классический метод *parallel thinking* (self-consistency) работает так: модель генерирует множество рассуждений и выбирает лучший ответ по большинству. Точность повышается, но ресурсы тратятся огромные — тысячи токенов уходят на слабые варианты.
🔹 DeepConf решает эту проблему: модель сама оценивает уровень уверенности в рассуждениях и отбрасывает «слабые» ветви — либо сразу, либо после генерации.
Как это устроено:
1️⃣ Оценка уверенности на уровне токенов — смотрится вероятность выбранного токена (log-prob) или энтропия.
2️⃣ Group Confidence — оценки объединяются в блоки, чтобы понять силу целой ветки рассуждения.
3️⃣ Online-режим — слабые ветки отсекаются прямо в процессе.
4️⃣ Offline-режим — сначала генерируются все ответы, потом остаются только те, где уверенность высокая.
📈 Результаты:
- На AIME-2025 точность выросла до 99,9%
- Количество лишних токенов сократилось почти на 85%
- Работает без дообучения и сложных настроек
📚 Paper: https://arxiv.org/pdf/2508.15260
🌐 Project: https://jiaweizzhao.github.io/deepconf
Учёные придумали новые метод Deep Think with Confidence (DeepConf).
Он позволяет модели сразу отбрасывать «слабые» варианты ответа и оставлять только те, в которых она уверена.
Классический метод *parallel thinking* (self-consistency) работает так: модель генерирует множество рассуждений и выбирает лучший ответ по большинству. Точность повышается, но ресурсы тратятся огромные — тысячи токенов уходят на слабые варианты.
🔹 DeepConf решает эту проблему: модель сама оценивает уровень уверенности в рассуждениях и отбрасывает «слабые» ветви — либо сразу, либо после генерации.
Как это устроено:
1️⃣ Оценка уверенности на уровне токенов — смотрится вероятность выбранного токена (log-prob) или энтропия.
2️⃣ Group Confidence — оценки объединяются в блоки, чтобы понять силу целой ветки рассуждения.
3️⃣ Online-режим — слабые ветки отсекаются прямо в процессе.
4️⃣ Offline-режим — сначала генерируются все ответы, потом остаются только те, где уверенность высокая.
📈 Результаты:
- На AIME-2025 точность выросла до 99,9%
- Количество лишних токенов сократилось почти на 85%
- Работает без дообучения и сложных настроек
📚 Paper: https://arxiv.org/pdf/2508.15260
🌐 Project: https://jiaweizzhao.github.io/deepconf
❤13👍10🔥5⚡1🥰1