🔥 Гугл успел проиндексировать больше 370 000 чатов Grok
В поисковой выдаче теперь спокойно всплывают диалоги, где встречаются:
- 🧪 рецепты запрещённых веществ
- 🔑 персональные данные и API-ключи
- 🕵️ даже обсуждение убийства Маска
Причина проста — при нажатии на кнопку «поделиться» такие чаты автоматически становятся открытыми для индексации, без каких-либо предупреждений.
Интересно, что пару недель назад OpenAI уже попали под огонь за похожую историю: у них хотя бы была отдельная кнопка и дисклеймер, но проблему быстро прикрыли и подчистили.
А Маск тогда язвительно заявлял , что у Grok подобного не бывает. Допрыгался👍
📌 Подробности
@data_analysis_ml
В поисковой выдаче теперь спокойно всплывают диалоги, где встречаются:
- 🧪 рецепты запрещённых веществ
- 🔑 персональные данные и API-ключи
- 🕵️ даже обсуждение убийства Маска
Причина проста — при нажатии на кнопку «поделиться» такие чаты автоматически становятся открытыми для индексации, без каких-либо предупреждений.
Интересно, что пару недель назад OpenAI уже попали под огонь за похожую историю: у них хотя бы была отдельная кнопка и дисклеймер, но проблему быстро прикрыли и подчистили.
А Маск тогда язвительно заявлял , что у Grok подобного не бывает. Допрыгался
📌 Подробности
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
😁21❤3👍2🔥2👏1
🧮 GPT-5 Pro выходит на новый уровень.
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: балы взята статья по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска.
GPT-5 Pro предложил доказательство, которое улучшило решение из оригинальной работы, и автор эксперимента лично проверил его корректность.
📄 В первой версии статьи было установлено:
🟢 если η < 1/L (L — параметр гладкости), кривая значений функции выпуклая;
🟢 если η > 1.75/L, существует контрпример.
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Пост полностью.
@data_analysis_ml
Теперь модель способна выводить корректные математические доказательства прямо из научных статей.
📌 Недавний пример: GPT-5 Pro построила проверенное доказательство из работы по выпуклой оптимизации, расширив «безопасное окно шага» на 50%.
🧮 Эксперимент выглядел так: балы взята статья по выпуклой оптимизации, где оставался открытым вопрос о шагах градиентного спуска.
GPT-5 Pro предложил доказательство, которое улучшило решение из оригинальной работы, и автор эксперимента лично проверил его корректность.
📄 В первой версии статьи было установлено:
Неясным оставался диапазон [1/L, 1.75/L].
💡 GPT-5 Pro сумел продвинуться и показал, что условие выпуклости сохраняется вплоть до η = 1.5/L. Это не окончательное решение, но значимый шаг вперёд — фактически новый научный результат, который мог бы быть опубликован на arXiv.
👀 Однако в обновлённой версии статьи , где появился дополнительный соавтор, люди закрыли задачу полностью, доказав точность границы 1.75/L.
Примечательно, что доказательство GPT-5 Pro оказалось независимым: оно не совпадает с версией v2 и выглядит как естественное развитие идей из v1. Это показывает, что модель действительно смогла предложить свой собственный путь к решению открытой математической проблемы.
Главное не только в результате, но и в контроле: на второй попытке, при заданных ограничениях, модель сместила константу дальше — сохранив все правила.
Можно представить так: GPT-5 крутит очень чувствительную ручку, но не ломает механизм — а параллельно пишет чистое и проверяемое объяснение, которое может разобрать эксперт.
Это шаг к тому, чтобы ИИ стал ежедневным соавтором на самых острых технических границах — где модели быстро «поджимают» константы, а люди доводят их до предела.
Эра, когда большая часть математических открытий будет рождаться вместе с ИИ, только начинается. 🚀
Пост полностью.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15👍5🔥5🥱4🤯1😢1