🚀 DiffusionRenderer (Cosmos): Neural Inverse and Forward Rendering with Video Diffusion Models
Cosmos DiffusionRenderer — это современный фреймворк для нейросетевого de-lighting и re-lighting видео и изображений.
Новый релиз даёт качественный скачок по сравнению с предыдущей версией: ещё более чистое удаление и добавление освещения благодаря архитектуре NVIDIA Cosmos и улучшенному пайплайну обработки данных.
🔧 Минимальные требования:
• Python 3.10
• NVIDIA GPU с минимум 16 ГБ VRAM (рекомендуется ≥24 ГБ)
• NVIDIA драйверы и CUDA 12.0+
• Свободно ≥70 ГБ на диске
Проект протестирован на Ubuntu 20.04 и видеокартах NVIDIA A100/A5000.
https://github.com/nv-tlabs/cosmos1-diffusion-renderer
@data_analysis_ml
Cosmos DiffusionRenderer — это современный фреймворк для нейросетевого de-lighting и re-lighting видео и изображений.
Новый релиз даёт качественный скачок по сравнению с предыдущей версией: ещё более чистое удаление и добавление освещения благодаря архитектуре NVIDIA Cosmos и улучшенному пайплайну обработки данных.
🔧 Минимальные требования:
• Python 3.10
• NVIDIA GPU с минимум 16 ГБ VRAM (рекомендуется ≥24 ГБ)
• NVIDIA драйверы и CUDA 12.0+
• Свободно ≥70 ГБ на диске
Проект протестирован на Ubuntu 20.04 и видеокартах NVIDIA A100/A5000.
https://github.com/nv-tlabs/cosmos1-diffusion-renderer
@data_analysis_ml
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/python_job_interview
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/machinelearning_ru
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/python_job_interview
Linux: t.me/linuxacademiya
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/machinelearning_ru
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
🔥 AMD возвращается — и бросает вызов NVIDIA
Конец эпохи дефицита GPU?
На конференции Advancing AI AMD представила новые чипы MI350 и анонсировала серию MI400.
💥 MI350X:
• В 35 раз выше производительность инференса, чем у MI300
• На 40% энергоэффективнее, чем NVIDIA Blackwell
• Новый сервер Helios — до 72 чипов на стойку (ответ NVL72 от NVIDIA)
💬 Сэм Альтман (OpenAI) подтвердил партнёрство и участие в проектировании MI450
🧠 Microsoft, Meta, Oracle, xAI — уже на борту
🔓 AMD делает ставку на открытые стандарты (в отличие от CUDA)
♻️ Цель — 20-кратный рост энергоэффективности дата-центров к 2030
⚙️ AMD впервые всерьёз конкурирует с NVIDIA
Ставки: цена, открытость и масштабируемость.
MI350X выглядит как серьёзный конкурент Blackwell, а поддержка MI450 со стороны Альтмана — это далеко не пустой жест.
Если AMD продолжит продвигать открытые стандарты и энергоэффективность, мы наконец-то можем увидеть борьбу за рынок с NVIDIA на рынке GPU.
@data_analysis_ml
Конец эпохи дефицита GPU?
На конференции Advancing AI AMD представила новые чипы MI350 и анонсировала серию MI400.
💥 MI350X:
• В 35 раз выше производительность инференса, чем у MI300
• На 40% энергоэффективнее, чем NVIDIA Blackwell
• Новый сервер Helios — до 72 чипов на стойку (ответ NVL72 от NVIDIA)
💬 Сэм Альтман (OpenAI) подтвердил партнёрство и участие в проектировании MI450
🧠 Microsoft, Meta, Oracle, xAI — уже на борту
🔓 AMD делает ставку на открытые стандарты (в отличие от CUDA)
♻️ Цель — 20-кратный рост энергоэффективности дата-центров к 2030
⚙️ AMD впервые всерьёз конкурирует с NVIDIA
Ставки: цена, открытость и масштабируемость.
MI350X выглядит как серьёзный конкурент Blackwell, а поддержка MI450 со стороны Альтмана — это далеко не пустой жест.
Если AMD продолжит продвигать открытые стандарты и энергоэффективность, мы наконец-то можем увидеть борьбу за рынок с NVIDIA на рынке GPU.
@data_analysis_ml
🧠 Спор о будущем: Дженсен Хуанг против Дарио Амодеи
CEO Nvidia Дженсен Хуанг и глава Anthropic Дарио Амодеи — по разные стороны баррикад, когда речь идёт о будущем рабочих мест в эпоху ИИ.
🔻 Амодеи бьёт тревогу:
ИИ может «съесть» до 50% начальных должностей уже в ближайшие 5 лет. Массовая безработица — реальный риск. Он также настаивает на жёстком регулировании разработки ИИ.
🔺 Хуанг с ним не согласен:
Он не верит в крах рынка труда. По его мнению, ИИ поднимет производительность и трансформирует рабочие процессы, создав новые рабочие места. Более того, он считает, что технологии должны развиваться открыто — как в медицине, чтобы вовремя выявлять риски.
🤔 Но…
Хуанг так и не объяснил, какие именно профессии появятся и почему люди в них будут лучше ИИ.
💬 Амодеи звучит убедительнее. Слепая вера в «появление новых рабочих мест» без конкретики — опасная иллюзия.
@data_analysis_ml
CEO Nvidia Дженсен Хуанг и глава Anthropic Дарио Амодеи — по разные стороны баррикад, когда речь идёт о будущем рабочих мест в эпоху ИИ.
🔻 Амодеи бьёт тревогу:
ИИ может «съесть» до 50% начальных должностей уже в ближайшие 5 лет. Массовая безработица — реальный риск. Он также настаивает на жёстком регулировании разработки ИИ.
🔺 Хуанг с ним не согласен:
Он не верит в крах рынка труда. По его мнению, ИИ поднимет производительность и трансформирует рабочие процессы, создав новые рабочие места. Более того, он считает, что технологии должны развиваться открыто — как в медицине, чтобы вовремя выявлять риски.
🤔 Но…
Хуанг так и не объяснил, какие именно профессии появятся и почему люди в них будут лучше ИИ.
💬 Амодеи звучит убедительнее. Слепая вера в «появление новых рабочих мест» без конкретики — опасная иллюзия.
@data_analysis_ml
🧩 GenAIScript — библиотека для программирования промптов и работы с LLM. Проект предлагает необычный подход: вместо написания статичных текстовых запросов, вы конструируете их программно, используя JavaScript.
Скрипты поддерживают работу с файлами, валидацию данных через схемы и интеграцию с внешними API. Инструмент имеет встроенную поддержку различных провайдеров (OpenAI, Anthropic, GitHub Copilot) и возможность запуска локальных моделей через Ollama.
🤖 GitHub
@data_analysis_ml
Скрипты поддерживают работу с файлами, валидацию данных через схемы и интеграцию с внешними API. Инструмент имеет встроенную поддержку различных провайдеров (OpenAI, Anthropic, GitHub Copilot) и возможность запуска локальных моделей через Ollama.
🤖 GitHub
@data_analysis_ml
📘 «Компьютерное зрение коротко и ясно» — книга, которую вы действительно прочитаете
Эта книга охватывает основы computer vision с точки зрения обработки изображений и машинного обучения. Цель — не просто объяснить, а сформировать интуицию у читателя. В книге много наглядных визуализаций и минимум лишних слов.
👥 Для кого:
• студенты бакалавриата и магистратуры, которые только входят в область
• практики, которым нужен быстрый и содержательный обзор
📏 Идея была простой: написать небольшую книгу с максимумом пользы — по 5 страниц на главу, только с самыми важными идеями.
Но… увы, и это не удалось — тема слишком широка, чтобы уместиться в малый формат.
📚 Получилось то, что нужно: сильная, визуальная и сжатая книга по компьютерному зрению, которую не страшно открыть и приятно дочитать.
✔️ Книга
@data_analysis_ml
Эта книга охватывает основы computer vision с точки зрения обработки изображений и машинного обучения. Цель — не просто объяснить, а сформировать интуицию у читателя. В книге много наглядных визуализаций и минимум лишних слов.
👥 Для кого:
• студенты бакалавриата и магистратуры, которые только входят в область
• практики, которым нужен быстрый и содержательный обзор
📏 Идея была простой: написать небольшую книгу с максимумом пользы — по 5 страниц на главу, только с самыми важными идеями.
Но… увы, и это не удалось — тема слишком широка, чтобы уместиться в малый формат.
📚 Получилось то, что нужно: сильная, визуальная и сжатая книга по компьютерному зрению, которую не страшно открыть и приятно дочитать.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🎨 miniDiffusion — Stable Diffusion 3.5 на минималках (и на PyTorch)
miniDiffusion — это предельно упрощённая реализация Stable Diffusion 3.5, написанная с нуля на чистом PyTorch, всего в ~2800 строках кода.
Проект создан для тех, кто хочет разобраться, как работает генерация изображений, без лишней магии и зависимостей.
🧠 Что внутри:
• Полная модель от VAE до DiT, включая тренировочные скрипты
• Поддержка T5 и CLIP энкодеров
• Euler scheduler для решения ODE потока шума
• Расчёт метрики FID встроен
📁 Основные файлы:
-
-
-
-
-
-
-
-
📦 Структура:
-
-
🛠 Подходит для:
• обучения и экспериментов
• хакинга архитектур
• кастомной тренировки без головной боли
🚀 Если хотите понять, как собрать Stable Diffusion 3.5 "на коленке" — miniDiffusion создан именно для этого.
miniDiffusion — это предельно упрощённая реализация Stable Diffusion 3.5, написанная с нуля на чистом PyTorch, всего в ~2800 строках кода.
Проект создан для тех, кто хочет разобраться, как работает генерация изображений, без лишней магии и зависимостей.
🧠 Что внутри:
• Полная модель от VAE до DiT, включая тренировочные скрипты
• Поддержка T5 и CLIP энкодеров
• Euler scheduler для решения ODE потока шума
• Расчёт метрики FID встроен
📁 Основные файлы:
-
dit.py
— архитектура DiT -
dit_components.py
— эмбеддинги, нормализация, вспомогательные блоки -
attention.py
— совместное внимание (Joint Attention) -
noise.py
— планировщик шума -
t5_encoder.py
, clip.py
— текстовые энкодеры -
tokenizer.py
— токенизация -
metrics.py
— Fréchet Inception Distance -
common.py
, common_ds.py
— функции и датасет для обучения📦 Структура:
-
model/
— чекпоинты и логи -
encoders/
— предобученные модули (VAE, CLIP и др.)🛠 Подходит для:
• обучения и экспериментов
• хакинга архитектур
• кастомной тренировки без головной боли
🚀 Если хотите понять, как собрать Stable Diffusion 3.5 "на коленке" — miniDiffusion создан именно для этого.