Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🔥 Transformers Laid Out

Лучший способ изучить PyTorch — создать что-нибудь с его помощью на практике.

В этом блоге представлен пошаговый гайд по написанию трансформерам с помощью PyTorch с нуля.🖥

📌 Гайд
📌 Что под капотом у PyTorch
📌Видео объяснения базы по тензорам
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Neural Structured Learning (NSL) — это фреймворк для обучения нейронных сетей с использованием структурированных сигналов, таких как графы и данные с враждебными искажениями!

🌟 NSL позволяет улучшать точность моделей, особенно при ограниченном объёме размеченных данных, за счёт объединения как размеченных, так и неразмеченных данных.

🔍 Основные возможности:

🌟 API для работы с графами и враждебными искажениями на базе TensorFlow и Keras.

🌟 Поддержка создания графов и входных данных для обучения.

🌟 Универсальность для различных архитектур (CNN, RNN и др.) и методов обучения (контролируемого, частично контролируемого и др.).

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Alibaba только что выпустила TaoAvatar на Hugging Face

Реалистичные говорящие аватары в полный рост для дополненной реальности с помощью 3D-гауссовых сплатов.

Он обеспечивает точное управление мимикой и движениями, работая в реальном времени даже на мобильных устройствах.

Метод использует нейросетевую дистилляцию, достигая 90 FPS на Apple Vision Pro.

🟡Проект
🟡Статья
🟡Видео
🟡Демка

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Neuralink с открытым исходным кодом с использованием активности мозга обезьяны для управления роботизированными руками 🙉

Проект Jenkins исследует интерфейсы мозг-компьютер путем декодирования нейронной активности в движения роботов и генерации синтетических мозговых данных.

Используя нейронные записи мозговой активности обезьяны по имени Дженкинс, исследователи разработали модели для преобразования мозговых сигналов в движения роботизированной руки.

Лидер (рука1) двигается человеком, а Фоловер (рука 2) имитирует эти движения на основе симулированной нейронной активности обезьяны Дженкинса. Машины обучения (ML) используются для создания замкнутого цикла:
Кодирование: Transformer модель генерирует синтетические нейронные спайки из данных движения Лидера, симулируя, как бы выглядела активность мозга Дженкинса для этого движения.

Декодирование: Многослойный перцептрон (MLP) декодирует эти синтетические спайки обратно в скорости рук, которые используются для управления Фоловером.
Этот процесс создает двусторонний цикл: движение человека → симулированная нейронная активность → декодированные движения → действие робота.

В проекте используются роботизированные руки и интерактивная веб-консоль для генерации данных о работе мозга в режиме реального времени с помощью джойстика.

Проект имеет потенциальные применения в моторных протезах (например, для помощи парализованным людям управлять роботизированными конечностями) и нейронаучных исследованиях (понимание, как мозг кодирует движение). Это также имеет образовательное значение, демонстрируя применение ML в сложных нейронаучных задачах.

Github

@data_analysis_ml
Forwarded from Machinelearning
📌 72B слишком много для VLM? А 7B параметров недостаточно!

QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.

Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.

Модель выдает более подробные и структурированный ответы.

💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.

📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.

🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.

Еще один крутой релиз понедельника!

🟢Блог: https://qwenlm.github.io/blog/qwen2.5-vl-32b/
🟢Попробовать: https://chat.qwen.ai
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
🟢Модель: https://modelscope.cn/models/Qwen/Qwen2.5-VL-32B-Instruct

@ai_machinelearning_big_data


#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Helix — это платформа для создания и развертывания AI-приложений с использованием декларативных конвейеров, интеграции знаний и API!

🌟 Она позволяет описывать AI-решения в YAML-файле (helix.yaml), что упрощает их настройку, тестирование и развертывание. Helix ориентирован на разработчиков, которые хотят строить генеративные AI-приложения с гибкостью и полной приватностью.

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥Вышел новый ИИ-тренер для геймеров от Nvidia: G-Assist

Это ваш бесплатный оффлайн-компаньон, который поможет:

🎮 Оптимизирует настройки игры под ваш ПК
⚔️ Подбирает билды для боссов, данжей и Dota
🎧 Управляет музыкой в Spotify
🤖 Работает локально, но можно подключить API Gemini
💬 Общение через текст или голос

G-Assist бесплатнен для всех пользователей.

https://www.nvidia.com/en-us/geforce/news/g-assist-ai-companion-for-rtx-ai-pcs/
Forwarded from Machinelearning
А вот и Gemini 2.5 Pro Experimental — самая интеллектуальная модель Google

Теперь это лучшая не ризонинг модель, которая опередила на бенчмарках Sonnet 3.5.

Без оптимизаций Gemini 2.5 Pro Experimental лидирует в таких математических и научных бнчмарках GPQA и AIME 2025.

Кроме того, модель набрала 18,8 % баллов на последнем экзамене человечества.

💡Это экспериментальный релиз демонстрирует передовые результаты во многих бенчмарках и прекрасно справляется со сложными задачами и предоставлять более точные ответы.

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-pro

#google #Gemini
🖥 Aiopandas - легковесный патч для Pandas, который добавляет нативную async поддержку для самых популярных методов обработки данных: map, apply, applymap, aggregate и transform.

Позволяет без проблем передавать async функции в эти методы. Библиотека автоматически запустит их асинхронно, управляя количеством одновременно выполняемых задач с помощью параметра max_parallel.

Ключевые возможности:

Простая интеграция: Используйте как замену стандартным функциям Pandas, но теперь с полноценной поддержкой async функций.
Контролируемый параллелизм: Автоматическое асинхронное выполнение ваших корутин с возможностью ограничить максимальное число параллельных задач (max_parallel). Идеально для управления нагрузкой на внешние сервисы!
Гибкая обработка ошибок: Встроенные опции для управления ошибками во время выполнения: выбросить исключение (raise), проигнорировать (ignore) или записать в лог (log).
Индикация прогресса: Встроенная поддержка tqdm для наглядного отслеживания процесса выполнения долгих операций в реальном времени.

🖥 Github: https://github.com/telekinesis-inc/aiopandas

#python #pandas #asyncio #async #datascience #программирование #обработкаданных #асинхронность
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Проект 3DGRUT представляет собой набор официальных реализаций методов 3D Gaussian Ray Tracing (3DGRT) и 3D Gaussian Unscented Transform (3DGUT).

💡 Основная идея:
Проект предлагает альтернативный подход к традиционному рендерингу, основанный на трассировке лучей, где вместо точечных лучей используются объёмные гауссовы частицы. Это позволяет моделировать сложные эффекты, например, камеры с искажениями (роллинг-шаттер) и временные эффекты.

⚙️ Гибридный подход:
3DGRUT объединяет преимущества растеризации и трассировки лучей – первичные лучи можно рендерить быстро через растеризацию, а вторичные лучи обрабатываются с помощью трассировки, что повышает гибкость и производительность.

🚀 Текущая стадия:
Проект находится на стадии альфа-версии. Он включает демонстрационную среду (Playground) для тестирования и экспериментов, а также предоставляет подробные инструкции по установке, настройке и запуску.

🔧 Требования и установка:
Для работы проекта требуется Python (3.10+), соответствующие зависимости, а также поддержка OpenGL и других библиотек. В репозитории описаны команды для установки необходимых пакетов и запуска тренировочного процесса.

Проект предназначен для исследователей и разработчиков, желающих экспериментировать с новыми методами рендеринга, а также для тех, кто интересуется интеграцией современных подходов в компьютерную графику.

📌 Github

@data_analysis_ml
🤖 Awesome Weekly Robotics

Репозиторий Awesome Weekly Robotics на GitHub, представляет собой большую коллекцию проектов, инструментов и ресурсов по робототехнике с открытым исходным кодом.

🔗 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 В chat.qwenlm.ai chat теперь доступны голосовой режим + режим видеочата

Более того китайцы выложили код своей Qwen2.5-Omni-7B - единой omni-модели, которая может понимать текст, аудио, изображение и видео.

Они разработали архитектуру "thinker-talker", которая обеспечивает одновременное размышление модели и ее разговор .

Вскоре обещают выпустить в опенсорс модели на еще большее количество параметров.

Просто топ, бегом тестить.

🟢Попробовать: https://chat.qwenlm.ai
🟢Paper: https://github.com/QwenLM/Qwen2.5-Omni/blob/main/assets/Qwen2.5_Omni.pdf
🟢Blog: https://qwenlm.github.io/blog/qwen2.5-omni
🟢GitHub: https://github.com/QwenLM/Qwen2.5-Omni
🟢Hugging Face: https://huggingface.co/Qwen/Qwen2.5-Omni-7B
🟢ModelScope: https://modelscope.cn/models/Qwen/Qwen2.5-Omni-7B

@ai_machinelearning_big_data

#qwen #release #Omni
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 ChatTTS — генеративная text2speech модель с упором реалистичность

import ChatTTS
from IPython.display import Audio

chat = ChatTTS.Chat()
chat.load_models()

texts = ["<PUT YOUR TEXT HERE>",]

wavs = chat.infer(texts, use_decoder=True)
Audio(wavs[0], rate=24_000, autoplay=True)


ChatTTS — это модель преобразования текста в речь, разработанная специально для сценариев диалога, таких как LLM-ассистент.
ChatTTS поддерживает как английский, так и китайский языки (если кому актуально).

🖥 GitHub
🤗 Погонять в Hugging Face
🟡 Страничка ChatTTS
Please open Telegram to view this post
VIEW IN TELEGRAM
🎉 Выпущен Техрепорт Wan! 🚀

📖 https://arxiv.org/abs/2503.20314

Wan 2.1 — это открытый инструмент для генерации видео от Alibaba.

В отчете описана архитектура модели, конвейер обработки данных, обучение модели, повышение ее эффективности, алгоритм редактирования видео и т. д.

🟢Официальный сайт: https://wan.video
🟢Github: https://github.com/Wan-Video/Wan2.1
🟢HF: https://huggingface.co/Wan-AI
🟢Modelscope: https://modelscope.cn/organization/Wan-AI

#WAN #OpenSource #VideoGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Этот гайд демонстрирует, как использовать Florence 2 с Ultralytics YOLO для обнаружения объектов, сегментации изображений и создания визуализаций на основе текстовых промпов, например, для создания подписей к изображениям.

Microsoft выпустила модель Florence-2 в прошлом году. Это мощная CV модель зрения, которая использует подход, на подсказках, для решения широкого спектра задач, связанных со зрением и языком зрения. Она может интерпретировать простые текстовые подсказки для выполнения таких задач, как создание надписей, обнаружение объектов и сегментация.

Для обучения в гайде используется набор данных FLD-5B, содержащий 5,4 миллиарда аннотаций к 126 миллионам изображений.

📌 Гайд
📌 Colab

@data_analysis_ml