Forwarded from Machinelearning
Релиз R1 и новости об инвестировании в развитие отрасли, вызвали падение акций американских ИТ-гигантов на бирже NASDAQ.
Но помимо R1 в этом месяце разработчики из Китая выпустили еще очень много интересных моделей 🔥 Китай набирает очень серьезные обороты,
Давайте посмотрим на список самых ярких релизов из Поднебесной за январь:
LLM:
✨ InternLM3-8B-Instruct
✨ MiniMax-Text-01
✨ RWKV-7 RNN + трансформер 👀
✨ Собственно сам DeepSeek-R1
✨ Baichuan-M1-14B медицинский LLM 🩺
✨ Qwen2.5-Math-PRM от Alibaba
✨ Qwen2.5 -1M
Модели кодинга:
✨ Tare от BytedanceTalk
TTS модели синтеза и генерации речи:
✨ T2A-01-HD от MiniMax AI
✨ LLaSA
МЛЛМ:
✨ Kimi k1.5 от Moonshot AI
✨ MiniCPM-o-2_6 от OpenBMB
✨ Sa2VA-4B от ByteDanceOSS
✨ VideoLLaMA 3 от Alibaba DAMO
✨ LLaVA-Mini от Китайской академии наук
✨Hunyuan-7B от TXhunyuan
✨ Hunyuan 3D 2.0
ИИ-агенты:
✨ UI-TARS от ByteDanceOSS
✨ GLM-PC
Датасеты:
✨ Fineweb-Edu-Chinese-V2.1
✨ Multimodal_textbook от Alibaba
✨ MME-Finance от Hithink AI
✨ GameFactory от KwaiVGI
📌 Полный список Релизов
#ai #ml #digest #china #deepseek #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Open Suno уже здесь! Вы можете генерировать целые песни с моделью параметров 7B! 🔥
Вы можете выбрать фоновую музыку, жанр, тексты песен — качество на выходе просто безумное!
Доступны все контрольные точки модели
https://huggingface.co/m-a-p
Вы можете выбрать фоновую музыку, жанр, тексты песен — качество на выходе просто безумное!
Доступны все контрольные точки модели
https://huggingface.co/m-a-p
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🤗 На HF только что появились два новых ризонинг датасета.
1. OpenThoughts: 114 тыс примеров, полученных из R1 по математике, кодингу и науке https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
2. R1-Distill-SFT: 1.7M (!), отобранных из R1-32B на NuminaMath и Tulu data
https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT
@data_analysis_ml
1. OpenThoughts: 114 тыс примеров, полученных из R1 по математике, кодингу и науке https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
2. R1-Distill-SFT: 1.7M (!), отобранных из R1-32B на NuminaMath и Tulu data
https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT
@data_analysis_ml
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🐋 DeepSeek только что потерпел поражение в ходе аудита NewsGuard и занял предпоследнее место по точности ответов чат-ботов, провалив 83% тестов.
В сравнении с западными конкурентами такими, как ChatGPT от OpenAI и Google Gemini, DeepSeek разделил 10-е место с другим чат-ботом.
т.е. когда предъявлялись явно ложные утверждения, они опровергались лишь в 17% случаев.
→ NewsGuard применил свой стандартный аудит дезинформации к DeepSeek, оценив, как он справлялся с ложными заявлениями в политике, здравоохранении, бизнесе и международных отношениях. В то время как ведущие чат-боты имели средний показатель ошибок 62%, DeepSeek показал себя значительно хуже, ошибившись в 83% случаев.
→ Чат-бот особенно плохо справлялся с запросами, связанными с новостями, повторяя ложные утверждения в 30% случаев и не давая прямых ответов в 53% случаев.
https://www.reuters.com/world/china/deepseeks-chatbot-achieves-17-accuracy-trails-western-rivals-newsguard-audit-2025-01-29/
#DeepSeek #ai #ml
В сравнении с западными конкурентами такими, как ChatGPT от OpenAI и Google Gemini, DeepSeek разделил 10-е место с другим чат-ботом.
т.е. когда предъявлялись явно ложные утверждения, они опровергались лишь в 17% случаев.
→ NewsGuard применил свой стандартный аудит дезинформации к DeepSeek, оценив, как он справлялся с ложными заявлениями в политике, здравоохранении, бизнесе и международных отношениях. В то время как ведущие чат-боты имели средний показатель ошибок 62%, DeepSeek показал себя значительно хуже, ошибившись в 83% случаев.
→ Чат-бот особенно плохо справлялся с запросами, связанными с новостями, повторяя ложные утверждения в 30% случаев и не давая прямых ответов в 53% случаев.
https://www.reuters.com/world/china/deepseeks-chatbot-achieves-17-accuracy-trails-western-rivals-newsguard-audit-2025-01-29/
#DeepSeek #ai #ml
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⭐️ Mistral AI только что выпустили Small 3!
Вот все, что вам нужно знать:
- Доступны как предварительно обученные, так и настроенные контрольные точки
- без RL и без синтетических данных
- Mistral Small 3 оптимизирован по задержке
- 24B параметров
- 81% точности на MMLU и задержка 150 токенов/с
- Позиционируется как замена GPT-40-mini
- Конкурирует с Llama 3.3 70B и Qwen 32B
- в 3 раза быстрее, чем инструкция Llama 3.3 70B
- Лицензия Apache 2.0
- Доступно в la Plateforme, HF и других провайдерах
Варианты использования включают в себя быстродействующих речевых помощников, вызов функций с малой задержкой, тонкую настройку экспертных моделей и локальный вывод.
Великолепная маленькая модель, которая дополняет другие более крупные модели, такие как DeepSeek-R1.
https://mistral.ai/news/mistral-small-3/
#mistral #llm #ml #ai
Вот все, что вам нужно знать:
- Доступны как предварительно обученные, так и настроенные контрольные точки
- без RL и без синтетических данных
- Mistral Small 3 оптимизирован по задержке
- 24B параметров
- 81% точности на MMLU и задержка 150 токенов/с
- Позиционируется как замена GPT-40-mini
- Конкурирует с Llama 3.3 70B и Qwen 32B
- в 3 раза быстрее, чем инструкция Llama 3.3 70B
- Лицензия Apache 2.0
- Доступно в la Plateforme, HF и других провайдерах
Варианты использования включают в себя быстродействующих речевых помощников, вызов функций с малой задержкой, тонкую настройку экспертных моделей и локальный вывод.
Великолепная маленькая модель, которая дополняет другие более крупные модели, такие как DeepSeek-R1.
https://mistral.ai/news/mistral-small-3/
#mistral #llm #ml #ai
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Оценки стоимости обучения популярных моделей, таких как GPT-4o, Sonnet и DeepSeek (на H100)!
Калькулятор для оценки:
https://tnyqnervqldjme1y.vercel.app/
@data_analysis_ml
Калькулятор для оценки:
https://tnyqnervqldjme1y.vercel.app/
@data_analysis_ml
Forwarded from Machinelearning
🐋 DeepClaude
Высокопроизводительный LLM-интерфейс, который позволяет использовать возможности рассуждений DeepSeek R1 и творческие способности Claude с помощью единого и простого API и удобного иинтерфейса.
Особенности
🚀 Нулевая задержка - Очень быстрые ответы на базе высокопроизводительного API, написанного на Rust.
⚙️ Гибкая настройка соответствии с вашими потребностями
🌟 Открытый исходный код
🤖 Двойная мощь ИИ - объедините рассуждения DeepSeek R1 с и возможностями Claude
⭐️ DeepClaude объединяет обе модели, чтобы обеспечить:
- Новая SOTA 64,0% на бенчмарке aider polyglot
- 14-кратное снижение затрат по сравнению с предыдущей SOTA
- Повышенную точность генерации кода для различных языков программирования
▪ Github
▪Docs
@ai_machinelearning_big_data
#DeepSeek #Claude #llm #ml #ai #DeepClaude #opensource
Высокопроизводительный LLM-интерфейс, который позволяет использовать возможности рассуждений DeepSeek R1 и творческие способности Claude с помощью единого и простого API и удобного иинтерфейса.
Особенности
🚀 Нулевая задержка - Очень быстрые ответы на базе высокопроизводительного API, написанного на Rust.
⚙️ Гибкая настройка соответствии с вашими потребностями
🌟 Открытый исходный код
🤖 Двойная мощь ИИ - объедините рассуждения DeepSeek R1 с и возможностями Claude
- Новая SOTA 64,0% на бенчмарке aider polyglot
- 14-кратное снижение затрат по сравнению с предыдущей SOTA
- Повышенную точность генерации кода для различных языков программирования
git clone https://github.com/getasterisk/deepclaude.git
cd deepclaude
▪ Github
▪Docs
@ai_machinelearning_big_data
#DeepSeek #Claude #llm #ml #ai #DeepClaude #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Усиление способности к сверхобобщению в моделях языка зрения при затратах менее $3.
Модель 2B превосходит модель 72B в тестах OOD всего за 100 шагов обучения.
▪ Github
@data_analysis_ml
#ml #ai #datascience
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Anthropic разработала новый метод защиты LLM от джейлбрейк-атак, который не исправляет сами модели, а блокирует попытки взлома, не допуская нежелательных ответов.
Для создания защитного экрана компания сгенерировала датасет вопросов и ответов и перевела их на несколько языков, переписала в стиле запросов, которые используются хакерами.
Чтобы проверить эффективности экрана, Anthropic провела конкурс, где 183 участника более 3000 часов пытались обмануть Claude, но никто не смог получить ответ на более чем на 5 из 10 запрещенных вопросов. Затем провели второй тест, где 10 000 джейлбрейков, созданных LLM, были направлены на защитный экран. Пробить его смогли только 4,4% запросов, а без использования экрана - 86%. Есть минус - система защиты может блокировать безобидные вопросы и увеличивает вычислительные затраты.
technologyreview.com
Ученые из Университета Суонси и Королевского колледжа Лондона в сотрудничестве с коллегами из Чили объявили о планах по разработке самовосстанавливающихся асфальтовых дорог из биомассы с использованием ИИ.
Исследования показали, что можно обратить вспять процесс растрескивания битума, чтобы «сшить» асфальт обратно. Для создания «самовосстанавливающегося» асфальта команда добавила крошечные пористые материалы - споры, заполненные переработанным растительным маслом. При появлении микротрещин масло высвобождается из спор, чтобы заполнить трещины и предотвратить окисление битума, которое приводит к образованию выбоин. Лабораторные эксперименты показали, что биоспоровые микрокапсулы полностью залечивали трещины в образце состаренного битума за 50 минут. Исследования стали возможны благодаря ML, которое применялось для изучения органических молекул в сложных вязких субстанциях.
highwaysmagazine.co.uk
Растет число стран и правительственных органов которые запретили использование моделей DeepSeek, выразив обеспокоенность по поводу этики, конфиденциальности и безопасности компании. Согласно политике DeepSeek, все данные пользователей хранятся в Китае, где местные законы требуют от организаций делиться данными с спецслужбами по запросу.
Италия стала одной из первых стран, запретивших DeepSeek после расследования комитетом по защите конфиденциальности. Тайвань запретил использование DeepSeek в гос.учреждениях из-за риска утечки информации. Конгресс США, Министерство обороны США, НАСА и и штат Техас также запретили использовать технологии DeepSeek, сославшись на потенциальные угрозы безопасности.
techcrunch.com
CNN, разработанная в Принстонском университете, спроектировала беспроводные чипы, которые превосходят существующие аналоги. Нейронная сеть пользовалась методикой реверсивного инжиниринга - она проанализировала желаемые свойства чипа и создала его его в обратном порядке. Инженеры не смогли объяснить, как работают эти чипы, что может привести к проблемам с их ремонтом и сделать их одноразовыми.
popularmechanics.com
Google Cloud анонсировала предварительный показ новых виртуальных машин A4, оснащенных NVIDIA Blackwell B200. Каждая A4 VM имеет 8 GPU Blackwell, соединенных NVLink пятого поколения, что обеспечивает двухкратное увеличение производительности по сравнению с A3 High VM предыдущего поколения.
A4 VMs подходят для обучения и тонкой настройки различных архитектур моделей и используют сетевой адаптер Titanium ML, который предоставляет неблокирующую передачу данных между GPUs со скоростью 3,2 Тбит/с.
Google предлагает различные модели потребления - Dynamic Workload Scheduler с режимами Flex Start и Calendar для различных рабочих нагрузок.
cloud.google.com
▪Blog ▪Github
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ OpenDeepResearcher
Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.
Для этого он использует несколько сервисов:
- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и извлечения контекста.
Функции
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста, - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же ссылка не будет обработана дважды.
▪ Github
@data_analysis_ml
Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.
Для этого он использует несколько сервисов:
- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и извлечения контекста.
Функции
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста, - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же ссылка не будет обработана дважды.
▪ Github
@data_analysis_ml