Анализ данных (Data analysis)
45.2K subscribers
2.11K photos
232 videos
1 file
1.9K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
⚡️ Qwen2 - самый крутой релиз откртых LLM со времен Llama 3!

Alibaba только что выпустили свое новое семейство мультиязычных моделей, которых превосходят по производительности Llama 3 по многим параметрам.

🤯 Qwen2 выпущен в 5 размерах и понимает 27 языков. В таких задачах, как написания кода и решения математических задач, Llama3 остает на всех тестах.


5️⃣ Размеры: 0.5B, 1.5B, 7B, 57B-14B (MoE), 72B.
Контекст: 32k для 0.5B & 1.5B, 64k для 57B MoE, 128k для 7B и 72B
Поддерживает 29 языков.
📜 Выпущены под лицензией Apache 2.0, за исключением версии 72B.

📖 BLOG: https://qwenlm.github.io/blog/qwen2/
🤗 HF collection: https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f
🤖 https://modelscope.cn/organization/qwen
💻 GitHub: https://github.com/QwenLM/Qwen2

@ai_machinelearning_big_data
📌Большая дорожная карта от William Brown: как и что изучать для развития в сфере генеративных нейросетей и AI

Здесь собраны тонны полезных ссылок по каждому из разделов, некоторые из этих ссылок уже постились в канале, скажем, ссылки на нереально полезные туториалы от Lilian Weng.
Вот основные разделы, которые покрывает этот roadmap:
— анализ временных рядов, марковские модели
— рекуррентные нейронные сети, LSTM и GRU,
— работа с языком: токенизация и т.д.
— методы файнтюнинга для LLM
— оценивание LLM и бенчмарки
— оптимизация LLM: квантование
— масштабирование контекста
— GAN, диффузионные модели
— мультимодальные модели

🟡 Roadmap

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Firecrawl — open-source краулер для вытягивания всей информации с сайтов в markdown-формате, пригодном для обучения LLM

Пройтись по конкретному URL и его подстраницам можно так:
curl -X POST https://api.firecrawl.dev/v0/crawl \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer YOUR_API_KEY' \
-d '{
"url": "https://mendable.ai"
}'

# { "jobId": "1234-5678-9101" }


🖥 GitHub
🟡 Инструкция по запуску локально

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Ratchet — кроссплатформенный ML-фреймворк от Hugging Face

Ratchet — это веб-фреймворк для вывода результатов машинного обучения.
Работает на базе WebGPU, так что он может работать на чём угодно, в том числе и на мобильных устройствах.
Ratchet заточен под скорость и простоту использования.

Использование в JavaScript выглядит наподобие:
// Asynchronous loading & caching with IndexedDB
let model = await Model.load(AvailableModels.WHISPER_TINY, Quantization.Q8, (p: number) => setProgress(p))
let result = await model.run({ input });


🖥 GitHub
🟡 Доки
🟡 Затестить Whisper + Ratchet на HF

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ 4х-часовой Мастер-класс по созданию GPT-2 с нуля от Андрея Карпаты

Соучредитель OpenAI Андрей Карпаты выпустил подробную 4-часовую лекцию по созданию модели GPT-2 на Python с нуля.

Он разъясняет каждый шаг, начиная с создания пустого файла, при этом подробно описывая архитектуру и оптимизацию.

- сначала создаем GPT-2
- затем мы оптимизируем ее для очень быстрого обучения
- затем мы настраиваем оптимизацию процесса обучения и гиперпараметров, ссылаясь на материалы статьи GPT-2 и GPT-3
- затем мы проводим оценку модели.

* Смотреть
* Github

@data_analysis_ml
🖥 AIMET — библиотека Python, которая предоставляет продвинутые методы квантования и сжатия обученных нейросетевых моделей

apt-get install liblapacke
python3 -m pip install aimet-torch


При помощи квантования AIMET помогает снизить требования к вычислительным ресурсам и памяти, при этом минимально влияя на точность работы модели.

🖥 GitHub
🟡 Доки и юзкейсы

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 gsplat — open-source библиотека для ускорения растеризации Gaussian Splatting при помощи CUDA

pip install gsplat

gsplat позволяет очень быстро растеризовать гауссианы на CUDA. Библиотека вдохновлена докладом на SIGGRAPH «3D Gaussian Splatting for Real-Time Rendering of Radiance Fields»

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Cog — open-source инструмент, позволяющий упаковывать ML-модели в стандартный, готовый к производству контейнер

brew install cog

Одно дело — обучить ML-модель и поиграться в тестовой среде, совсем другое дело — довести модель до продакшена.
Обычно это решается с помощью Docker, но заставить его работать сложно: Docker-файлы, пред-/постобработка, серверы Flask, версии CUDA.
С Cog развернуть модель становится гораздо проще.

🖥 GitHub

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🎨 pypalettes: A large (+2500) collection of color maps for matplotlib/seaborn.

Поиск идеальных цветов для вашей диаграммы на Python может оказаться непростой задачей. Выбор цветов вручную часто приводит к перебору множества неподходящих вариантов.

Pypalette - новый пакет предоставляет коллекцию цветов из более чем 2500 палитр, тщательно отобранных сотнями экспертов.

Это приложение позволяет вам без особых усилий изучать различные палитры и выбирать лучшие ваорианты.

Импортируется всего в две строки кода, работает с диаграммами Matplotlib.

Найдите для себя подходящую цветовую палитру, которая выделит вашу диаграмму на общем фоне! 😍

pip install git+https://github.com/JosephBARBIERDARNAL/pypalettes.git

Github
Проект

@data_analysis_ml
⚡️ MLJ — фреймворк Julia для машинного обучения

using MLJ

MLJ предоставляет реализацию разных ML-алгоритмов и полезные инструменты для настройки, оценивания и сравнения около 200 моделей, написанных на Julia и других языках.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM