Forwarded from Ivan Begtin (Ivan Begtin)
В рубрике полезных инструментов с открытым кодом для работы с данными Datasette [1]. Незаменим когда надо очень быстро и простым образом опубликовать данные так чтобы можно было их не просто скачать, но и связывать с другими данными, делать SQL запросы и просматривать онлайн.
Инструмент автоматически создаёт интерфейс поверх набора данных и даёт возможности поиска по нему разными способами. Его особенность в том что он работает поверх базы SQLlite, которую также можно скачать.
Примеры публикаций датасетов с помощью datasette:
- global-power-plants.datasettes.com [2] - база электростанций по всему миру
- fara.datasettes.com [3] - реестр инагентов в США (FARA)
- covid-19.datasettes.com [4] - база кейсов по COVID-19
И многие другие.
Интерфейс который создает datasette неидеален и лично мне он не нравится, но для многих он может быть и будет полезен.
Ссылки:
[1] https://datasette.io/
[2] https://global-power-plants.datasettes.com/
[3] https://fara.datasettes.com/
[4] https://covid-19.datasettes.com/
#datatools #opendata #data #opensource
Инструмент автоматически создаёт интерфейс поверх набора данных и даёт возможности поиска по нему разными способами. Его особенность в том что он работает поверх базы SQLlite, которую также можно скачать.
Примеры публикаций датасетов с помощью datasette:
- global-power-plants.datasettes.com [2] - база электростанций по всему миру
- fara.datasettes.com [3] - реестр инагентов в США (FARA)
- covid-19.datasettes.com [4] - база кейсов по COVID-19
И многие другие.
Интерфейс который создает datasette неидеален и лично мне он не нравится, но для многих он может быть и будет полезен.
Ссылки:
[1] https://datasette.io/
[2] https://global-power-plants.datasettes.com/
[3] https://fara.datasettes.com/
[4] https://covid-19.datasettes.com/
#datatools #opendata #data #opensource
Forwarded from Ivan Begtin (Ivan Begtin)
Для тех кто работает с данными и кому нужно регулярно кто-либо архивировать из социальных сетей, продвинутый инструмент для этой задачи - snscrape [1]. Поддерживает Faceboo, VK, Twitter, Instagram, Reddit и ещё много чего. Лучше всего архивирует данные твиттера.
Когда надо сохранить/регулярно сохранять чьи-то социальные сети - вещь незаменимая.
Работает с командной строки, написан на языке Python.
Ссылки:
[1] https://github.com/JustAnotherArchivist/snscrape
#datatools #opensource #digitalpreservation
Когда надо сохранить/регулярно сохранять чьи-то социальные сети - вещь незаменимая.
Работает с командной строки, написан на языке Python.
Ссылки:
[1] https://github.com/JustAnotherArchivist/snscrape
#datatools #opensource #digitalpreservation
GitHub
GitHub - JustAnotherArchivist/snscrape: A social networking service scraper in Python
A social networking service scraper in Python. Contribute to JustAnotherArchivist/snscrape development by creating an account on GitHub.
Взлом YouTube: как технически работает скачивание видео с популярного видеохостинга
Вы наверняка слышали о специальном софте, который позволяет скачивать видео с YouTube. Это — youtube-dl (yt-dl) и его клоны, такие как yt-dlp и yt-dlc.
Исходный код yt-dl и самого популярного клона yt-dlp написан на Python и опубликован на Github. Все инструменты используют стандартный интерфейс YouTube API, который постоянно меняется.
В статье рассматривают примеры обращения к YouTube API из командной строки и показывают, как работают «хакерские» способы, используемые в yt-dl и yt-dlp: https://habr.com/ru/companies/ruvds/articles/765798/
#google #безопасность #opensource
Вы наверняка слышали о специальном софте, который позволяет скачивать видео с YouTube. Это — youtube-dl (yt-dl) и его клоны, такие как yt-dlp и yt-dlc.
Исходный код yt-dl и самого популярного клона yt-dlp написан на Python и опубликован на Github. Все инструменты используют стандартный интерфейс YouTube API, который постоянно меняется.
В статье рассматривают примеры обращения к YouTube API из командной строки и показывают, как работают «хакерские» способы, используемые в yt-dl и yt-dlp: https://habr.com/ru/companies/ruvds/articles/765798/
#google #безопасность #opensource
Forwarded from Типичный программист
Хорошие практики работы с GitHub: как получить 4,5 тысяч звёзд на GitHub для OpenSource-проекта всего за 6 месяцев
Речь идёт про фреймворк ToolJet. Он создан, чтобы упростить создание приложений с формами, виджетами и дашбордами с помощью JavaScript. Так вот его разработчики поделились своим опытом, как им удалось правильно презентовать свой проект, найти аудиторию, получить фидбек и справедливую оценку.
Вот несколько из них.
#github #opensource #советы
Речь идёт про фреймворк ToolJet. Он создан, чтобы упростить создание приложений с формами, виджетами и дашбордами с помощью JavaScript. Так вот его разработчики поделились своим опытом, как им удалось правильно презентовать свой проект, найти аудиторию, получить фидбек и справедливую оценку.
Вот несколько из них.
#github #opensource #советы
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки про данные, технологии и не только:
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
ebpf.io
eBPF - Introduction, Tutorials & Community Resources
eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading a kernel module.
Forwarded from Ivan Begtin (Ivan Begtin)
Ещё один проект по быстрому созданию приложений на основе датасетов Preswald [1]. С открытым кодом, под лицензией Apache 2.0, вместо low code/no-code пропагандируют принцип Code-First Simplicity (минимальный, но необходимый код), а также декларативное программирование через конфигурацию в toml файлах.
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
Когда и кому такой инструмент зайдёт? Тем кому нужно быстро визуализировать данные в наглядном виде и предоставлять их в таком виде пользователям. В этом смысле продукт похож чем-то на Observable или Datasette [2] .
На мой взгляд в части демонстрации возможностей инструмента команда как-то сильно недорабатывает, не видно интерактивных демо, а с другой стороны это же просто ещё один инструмент в копилку аналогичных. Возможно, полезный в будущем.
Ссылки:
[1] https://github.com/StructuredLabs/preswald
[2] https://datasette.io
#opensource #datatools
GitHub
GitHub - StructuredLabs/preswald: Preswald is a WASM packager for Python-based interactive data apps: bundle full complex data…
Preswald is a WASM packager for Python-based interactive data apps: bundle full complex data workflows, particularly visualizations, into single files, runnable completely in-browser, using Pyodide...
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки про данные, технологии и не только:
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки про данные, технологии и не только:
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
- Kreuzberg [1] библиотека для Python по извлечению текста из документов, поддерживает множество форматов, внутри использует Pandoc и Tesseract OCR. Создано как раз для использования в задачах RAG (Retrieval Augmented Generation) с прицелом на локальную обработку данных и минимумом зависимостей. Лицензия MIT
- Validoopsie [2] другая библиотека для Python для валидации данных. Использует библиотеку Narwhals благодаря которой подключается к почти любым видами дата-фреймов. Выглядит полезной альтернативой Great Expectations, лично для меня в валидации данных глобальный нерешённый вопрос в том что тут правильнее, код или декларативное программирования. Иначе говоря, правила проверки должны ли быть отчуждаемыми от языка разработки. Здесь валидация встроена в код, но поверх можно сделать и декларативный движок. Лицензия MIT
- Scripton [3] коммерческое IDE для Python с необычной фичей визуализации данных в реальном времени. Есть только скриншоты, записи экрана и коммерческая версия для macOS. Для тех кто занимается алгоритмической визуализацией может быть удобно, для остальных задач пока нет такой уверенности.
- New horizons for Julia [4] по сути статья о том что язык программирования Julia ещё жив и развивается. Правда медленно, на мой взгляд, но вроде как есть позитивное движение за пределами научных областей. Лично я почти не сталкивался с Julia кроме как на уровне примеров кода, но хорошо если он кому-то нравится и полезен.
- Data-Driven Scrollytelling with Quarto [5] визуализация дата-историй с помощью движка Quarto, итоги конкурса таких визуализаций с большим числом примеров и победителей. Примеры все от команды компании Posit которая этот open-source движок Quarto и разрабатывает. Скажу отдельно что это очень правильно. Если ты делаешь любой движок по визуализации, то просто обязательно надо проводить такие конкурсы.
- The Best Way to Use Text Embeddings Portably is With Parquet and Polars [6] ещё один обзор о том насколько эффективен Parquet в связке с Polars для работы с данными, в данном случае данными карт Magic of the Gathering. Автор тоже задаётся вопросом о том почему Parquet не поддерживается в MS Excel.
- How to Make Superbabies [7] особенно длинный лонгрид о том как генетическими изменениями можно улучшать человека, создавать супер детей или "оптимизированных детей", как ещё пишет автор. Читать и думать об этом надо потому что всё идёт к тому что скоро это станет ещё одной острой социальной и геополитической темой.
Ссылки:
[1] https://github.com/Goldziher/kreuzberg
[2] https://github.com/akmalsoliev/Validoopsie
[3] https://scripton.dev/
[4] https://lwn.net/Articles/1006117/
[5] https://posit.co/blog/closeread-prize-winners/
[6] https://minimaxir.com/2025/02/embeddings-parquet/
[7] https://www.lesswrong.com/posts/DfrSZaf3JC8vJdbZL/how-to-make-superbabies
#opensource #data #datatools #dataviz #genetics #python
Forwarded from Ivan Begtin (Ivan Begtin)
В рубрике как это устроено у них Суверенное Технологическое Агентство Германии ( Sovereign Tech Agency) [1] специализированное агентство при The Federal Agency for Disruptive Innovation при Правительстве страны со специализацией на поддержке проектов с открытым кодом. Причём поддерживают они не просто раздачей грантовых средств, а то что можно назвать системной поддержкой сообщества.
У агентства действует четыре программы:
- Sovereign Tech Fund - фонд распределяющий грантовые программы на продукты с открытым кодом
- Sovereign Tech Resilience - целевая программа повышения надёжности открытого кода (финансирование исправления ошибок, общей инфраструктуры и тд.)
- Sovereign Tech Fellowship - на русский язык сложно правильно перевести слово fellowship, так что это программа фэллоушипа для разработчиков открытого кода когда их, по сути, берут на работу для того чтобы они 100% занимались только открытым кодом по своим проектам
- Sovereign Tech Challenge - программа целевых конкурсов для разработчиков открытого ПО
Почему это важно? Потому что кроме просто открытого кода общего назначения агентство финансировало и финансирует проекты связанные с данными. Например, curl получил поддержку в 195 тысяч евро в 2022 и 2023 года [2] потому что curl - это инструменты выгрузки данных;) Это более всего похоже на то что пара человек работала над проектом фуллтайм 2 года. А в 2025 и 2026 году агентство будет финансировать команду OpenStreetMap на сумму в 384 тысячи евро [3].
Ограничение агентства в том что они финансирует только заявки от организаций и разработчиков находящихся в Германии, зато это именно финансирование общественного блага именно в той форме которая не вызывает вопросов.
Ссылки:
[1] https://www.sovereign.tech
[2] https://www.sovereign.tech/tech/curl
[3] https://www.sovereign.tech/tech/openstreetmap
#opensource #data #germany
У агентства действует четыре программы:
- Sovereign Tech Fund - фонд распределяющий грантовые программы на продукты с открытым кодом
- Sovereign Tech Resilience - целевая программа повышения надёжности открытого кода (финансирование исправления ошибок, общей инфраструктуры и тд.)
- Sovereign Tech Fellowship - на русский язык сложно правильно перевести слово fellowship, так что это программа фэллоушипа для разработчиков открытого кода когда их, по сути, берут на работу для того чтобы они 100% занимались только открытым кодом по своим проектам
- Sovereign Tech Challenge - программа целевых конкурсов для разработчиков открытого ПО
Почему это важно? Потому что кроме просто открытого кода общего назначения агентство финансировало и финансирует проекты связанные с данными. Например, curl получил поддержку в 195 тысяч евро в 2022 и 2023 года [2] потому что curl - это инструменты выгрузки данных;) Это более всего похоже на то что пара человек работала над проектом фуллтайм 2 года. А в 2025 и 2026 году агентство будет финансировать команду OpenStreetMap на сумму в 384 тысячи евро [3].
Ограничение агентства в том что они финансирует только заявки от организаций и разработчиков находящихся в Германии, зато это именно финансирование общественного блага именно в той форме которая не вызывает вопросов.
Ссылки:
[1] https://www.sovereign.tech
[2] https://www.sovereign.tech/tech/curl
[3] https://www.sovereign.tech/tech/openstreetmap
#opensource #data #germany
Sovereign Tech Agency
Home | Sovereign Tech Agency
Investing in the infrastructure of the 21st century
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки про данные, технологии и не только:
AI & Science
- AI Scientist [1] фреймворки и примеры научных статей созданных полностью с помощью больших языковых моделей. Создано в японской AI лаборатории Sakana, у них же в блоге подробности [2]
- Accelerating scientific breakthroughs with an AI co-scientist [3] в блоге Google о мультиагентной системе на базе Gemini 2.0 для помощи исследователям в формировании гипотез и предложений исследователям. С акцентом на биомедицину, ожидаемо. Кстати, я до сих пор не видел ни одного исследования о потенциальном влиянии ИИ на разные научные дисциплины, а ведь потребность в таком анализе есть.
- ScienceOS [4] коммерческий сервис помощи исследователям с помощью ИИ. Как я понимаю пока там три основных сервиса: поговорить о науке в чате, поговорить вокруг PDF документа и управление ссылками.
- Awesome MCP Servers [5] большая коллекция серверов с Model Context Protocol в самых разных областях, в том числе с интеграцией с СУБД: Clickhouse, Elastic, BigQuery, Postgres и др.
Open Source
- Make Ubuntu packages 90% faster by rebuilding them [6] автор рассказывает как пересобирать пакеты для Linux ускоряя их приложения на примере утилиты jq. Почему это важно? jq используется во многих системах преобразования данных (ELT/ETL/скрейпинг) и сами советы дают некоторое понимание того как оптимизировать приложения с открытым кодом не меняя сам код
- Plane [7] аналог системы управления проектами Asana/Monday с открытым кодом. У открытой версии лицензия AGPL-3.0, так что использовать локально можно, а вот перепродавать свой сервис на их основе не получится.
Government & Data
- Government data is disappearing before our eyes [8] в целом ничего нового, но много ссылок на старое и происходящее сейчас с исчезновением открытых госданных в США.
- The State of Open Humanitarian Data 2025 [9] обзор состояния данных в сфере гуманитарной помощи от United Nations Office for the Coordination of Humanitarian Affairs (OCHA).
Ссылки:
[1] https://github.com/SakanaAI/AI-Scientist
[2] https://sakana.ai/ai-scientist-first-publication/
[3] https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/
[4] https://www.scienceos.ai/
[5] https://github.com/punkpeye/awesome-mcp-servers
[6] https://gist.github.com/jwbee/7e8b27e298de8bbbf8abfa4c232db097
[7] https://github.com/makeplane/plane
[8] https://thehill.com/opinion/technology/5201889-government-data-is-disappearing-before-our-eyes/
#opendata #opensource #openaccess #ai #science #government #data
AI & Science
- AI Scientist [1] фреймворки и примеры научных статей созданных полностью с помощью больших языковых моделей. Создано в японской AI лаборатории Sakana, у них же в блоге подробности [2]
- Accelerating scientific breakthroughs with an AI co-scientist [3] в блоге Google о мультиагентной системе на базе Gemini 2.0 для помощи исследователям в формировании гипотез и предложений исследователям. С акцентом на биомедицину, ожидаемо. Кстати, я до сих пор не видел ни одного исследования о потенциальном влиянии ИИ на разные научные дисциплины, а ведь потребность в таком анализе есть.
- ScienceOS [4] коммерческий сервис помощи исследователям с помощью ИИ. Как я понимаю пока там три основных сервиса: поговорить о науке в чате, поговорить вокруг PDF документа и управление ссылками.
- Awesome MCP Servers [5] большая коллекция серверов с Model Context Protocol в самых разных областях, в том числе с интеграцией с СУБД: Clickhouse, Elastic, BigQuery, Postgres и др.
Open Source
- Make Ubuntu packages 90% faster by rebuilding them [6] автор рассказывает как пересобирать пакеты для Linux ускоряя их приложения на примере утилиты jq. Почему это важно? jq используется во многих системах преобразования данных (ELT/ETL/скрейпинг) и сами советы дают некоторое понимание того как оптимизировать приложения с открытым кодом не меняя сам код
- Plane [7] аналог системы управления проектами Asana/Monday с открытым кодом. У открытой версии лицензия AGPL-3.0, так что использовать локально можно, а вот перепродавать свой сервис на их основе не получится.
Government & Data
- Government data is disappearing before our eyes [8] в целом ничего нового, но много ссылок на старое и происходящее сейчас с исчезновением открытых госданных в США.
- The State of Open Humanitarian Data 2025 [9] обзор состояния данных в сфере гуманитарной помощи от United Nations Office for the Coordination of Humanitarian Affairs (OCHA).
Ссылки:
[1] https://github.com/SakanaAI/AI-Scientist
[2] https://sakana.ai/ai-scientist-first-publication/
[3] https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/
[4] https://www.scienceos.ai/
[5] https://github.com/punkpeye/awesome-mcp-servers
[6] https://gist.github.com/jwbee/7e8b27e298de8bbbf8abfa4c232db097
[7] https://github.com/makeplane/plane
[8] https://thehill.com/opinion/technology/5201889-government-data-is-disappearing-before-our-eyes/
#opendata #opensource #openaccess #ai #science #government #data
GitHub
GitHub - SakanaAI/AI-Scientist: The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑🔬
The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑🔬 - SakanaAI/AI-Scientist
Forwarded from Ivan Begtin (Ivan Begtin)
Для тех кто работает с CSV файлами, неплохой и даже немного смешной текст A love letter to the CSV format [1] где автор рассуждает и расхваливает преимущества CSV формата для данных и аргументы его неплохи, но... лично мне недостатки не перевешивают. На его 9 пунктов я могу пару десятков пунктов написать о недостатках CSV, но плюсы тоже есть, чего уж тут скрывать. И, правильнее сказать что не один автор, а авторы, создатели утилиты xan, the CSV magician [2] для обработки CSV файлов.
Утилита эта является переписанной и переработой утилиты xsv [3] и позволяет вытворять самое разное с CSV файлами, включая визуализации, параллельную обработку, просмотр с командной строки и ещё многое другое.
Хороший инструмент, у него только один недостаток, он работает только с CSV файлами😂
Для тех кто любит командную строку и CSV формат - незаменимая штука.
Ссылки:
[1] https://github.com/medialab/xan/blob/master/docs/LOVE_LETTER.md
[2] https://github.com/medialab/xan
[3] https://github.com/BurntSushi/xsv
#opensource #data #datatools
Утилита эта является переписанной и переработой утилиты xsv [3] и позволяет вытворять самое разное с CSV файлами, включая визуализации, параллельную обработку, просмотр с командной строки и ещё многое другое.
Хороший инструмент, у него только один недостаток, он работает только с CSV файлами😂
Для тех кто любит командную строку и CSV формат - незаменимая штука.
Ссылки:
[1] https://github.com/medialab/xan/blob/master/docs/LOVE_LETTER.md
[2] https://github.com/medialab/xan
[3] https://github.com/BurntSushi/xsv
#opensource #data #datatools
Forwarded from Ivan Begtin (Ivan Begtin)
Обнаружил ещё один инструмент по проверке данных validator [1], умеет делать кросс табличные проверки данных и использует схему из спецификации Frictionless Data [2]. Пока малоизвестный, но кто знает. Он выглядит неплохо по способу реализации, но есть проблема с самой спецификацией и о ней отдельно.
Я неоднократно писал про Frictionless Data, это спецификация и набор инструментов созданных в Open Knowledge Foundation для описания и публикации наборов данных. Спецификация много лет развивалась, вокруг неё появился пул инструментов, например, свежий Open Data Editor [3] помогающий готовить датасеты для публикации на дата платформах на базе ПО CKAN.
С этой спецификацией есть лишь одна, но серьёзная проблема. Она полноценно охватывает только плоские табличные файлы. Так чтобы работать со схемой данных, использовать их SDK, тот же Open Data Editor и тд. Это даёт ей применение для некоторых видов данных с которыми работают аналитики и куда хуже с задачами дата инженерными.
Существенная часть рабочих данных с которыми я сталкивался - это не табличные данные. К примеру, в плоские таблицы плохо ложатся данные о госконтрактах или юридических лицах или объектах музейных коллекций. Там естественнее применения JSON и, соответственно, построчного NDJSON.
Для таких данных куда лучше подходят пакеты валидации данных вроде Cerberus [4]. Я использовал её в случае с реестром дата каталогов [5] в Dateno и пока не видел решений лучше.
Ссылки:
[1] https://github.com/ezwelty/validator/
[2] https://specs.frictionlessdata.io
[3] https://opendataeditor.okfn.org
[4] https://docs.python-cerberus.org/
[5] https://github.com/commondataio/dataportals-registry/
#opensource #data #datatools #dataquality
Я неоднократно писал про Frictionless Data, это спецификация и набор инструментов созданных в Open Knowledge Foundation для описания и публикации наборов данных. Спецификация много лет развивалась, вокруг неё появился пул инструментов, например, свежий Open Data Editor [3] помогающий готовить датасеты для публикации на дата платформах на базе ПО CKAN.
С этой спецификацией есть лишь одна, но серьёзная проблема. Она полноценно охватывает только плоские табличные файлы. Так чтобы работать со схемой данных, использовать их SDK, тот же Open Data Editor и тд. Это даёт ей применение для некоторых видов данных с которыми работают аналитики и куда хуже с задачами дата инженерными.
Существенная часть рабочих данных с которыми я сталкивался - это не табличные данные. К примеру, в плоские таблицы плохо ложатся данные о госконтрактах или юридических лицах или объектах музейных коллекций. Там естественнее применения JSON и, соответственно, построчного NDJSON.
Для таких данных куда лучше подходят пакеты валидации данных вроде Cerberus [4]. Я использовал её в случае с реестром дата каталогов [5] в Dateno и пока не видел решений лучше.
Ссылки:
[1] https://github.com/ezwelty/validator/
[2] https://specs.frictionlessdata.io
[3] https://opendataeditor.okfn.org
[4] https://docs.python-cerberus.org/
[5] https://github.com/commondataio/dataportals-registry/
#opensource #data #datatools #dataquality
Forwarded from Ivan Begtin (Ivan Begtin)
Я лично не пишу научных статей, потому что или работа с данными, или писать тексты. Но немало статей я читаю, почти всегда по очень узким темам и пользуюсь для этого, в основном, Semantic Scholar и подобными инструментами. Смотрю сейчас Ai2 Paper Finder [1] от института Аллена и они в недавнем его анонсе [2] пообещали что он умеет находить очень релевантные ответы по по очень узким темам. Собственно вот пример запроса по узкой интересной мне теме и он нашёл по ней 49 работ.
Вот это очень интересный результат, в списке интересных мне инструментов прибавилось однозначно.
Там же в анонсе у них есть ссылки на схожие продукты в этой области и на бенчмарки LitSearch [3] и Pasa [4] для измерения качества поиска по научным работам работам.
Ссылки:
[1] https://paperfinder.allen.ai/
[2] https://allenai.org/blog/paper-finder
[3] https://github.com/princeton-nlp/LitSearch
[4] https://github.com/bytedance/pasa
#ai #openaccess #opensource #science
Вот это очень интересный результат, в списке интересных мне инструментов прибавилось однозначно.
Там же в анонсе у них есть ссылки на схожие продукты в этой области и на бенчмарки LitSearch [3] и Pasa [4] для измерения качества поиска по научным работам работам.
Ссылки:
[1] https://paperfinder.allen.ai/
[2] https://allenai.org/blog/paper-finder
[3] https://github.com/princeton-nlp/LitSearch
[4] https://github.com/bytedance/pasa
#ai #openaccess #opensource #science
Forwarded from Ivan Begtin (Ivan Begtin)
Очень любопытный подход к созданию каталогов данных для распространения тяжёлых датасетов бесплатно 0$ Data Distribution [1]. Если вкратце то автор воспользовался сервисом Clouflare R2 в опции Egress и используя DuckDB и таблицы Iceberg, распространяя файлы в формате Parquet.
DuckDB там можно заменить на PyIceberg или Snowflake, главное возможность бесплатно подключить и захостить данные. У автора хорошее демо [2] с тем как это работает, ограничения только в том что надо вначале, достаточно быстро и автоматически получить ключ доступа к каталогу, но это как раз не проблема.
Это, с одной стороны, выглядит как чистый лайфхак ибо Cloudflare может изменить ценовую политику, а с другой очень даже полезная модель применения.
И сама работа с таблицами используя Apache Iceberg [3]. Если вы ещё не читали об этом подходе и инструменте, то стоит уделить время. Это тот случай когда каталог данных существует в дата инженерном контексте, а то есть по автоматизации работы с данными, но без СУБД. Однако поверх Iceberg можно построить свои системы управления данными, как открытые так и не очень. Это одна из фундаментальных технологий в том смысле что из неё и других как конструктор можно собрать свой дата продукт.
Ссылки:
[1] https://juhache.substack.com/p/0-data-distribution
[2] https://catalog.boringdata.io/dashboard/
[3] https://iceberg.apache.org/
#opensource #datacatalogs #dataengineering #analytics
DuckDB там можно заменить на PyIceberg или Snowflake, главное возможность бесплатно подключить и захостить данные. У автора хорошее демо [2] с тем как это работает, ограничения только в том что надо вначале, достаточно быстро и автоматически получить ключ доступа к каталогу, но это как раз не проблема.
Это, с одной стороны, выглядит как чистый лайфхак ибо Cloudflare может изменить ценовую политику, а с другой очень даже полезная модель применения.
И сама работа с таблицами используя Apache Iceberg [3]. Если вы ещё не читали об этом подходе и инструменте, то стоит уделить время. Это тот случай когда каталог данных существует в дата инженерном контексте, а то есть по автоматизации работы с данными, но без СУБД. Однако поверх Iceberg можно построить свои системы управления данными, как открытые так и не очень. Это одна из фундаментальных технологий в том смысле что из неё и других как конструктор можно собрать свой дата продукт.
Ссылки:
[1] https://juhache.substack.com/p/0-data-distribution
[2] https://catalog.boringdata.io/dashboard/
[3] https://iceberg.apache.org/
#opensource #datacatalogs #dataengineering #analytics
Substack
0$ Data Distribution
Ju Data Engineering Weekly - Ep 78
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки про данные, технологии и не только:
- Cloudflare R2 data catalog [1] свежий каталог данных на базе Apache Iceberg от Cloudflare поверх их сервиса хранения файлов R2. Хорошая новость, потому что R2 дешевле Amazon S3 при сравнимом качестве сервиса. Жду когда Backblaze запустит аналогичный сервис для их Backblaze B2
- xorq [2] читается как zork, фреймворк для обработки данных с помощью разных движков. Там и DuckDB, и Pandas, и DataFusion и др. Удобство в универсальности, но продукт пока малоизвестный, надо смотреть
- Iceberg?? Give it a REST! [3] автор рассуждает о том что без REST каталога Iceberg малополезен и, в принципе, про развитие этой экосистемы. Многие уже рассматривают стремительный взлёт Iceberg как хайп, что не отменяет того что технология весьма любопытная.
- BI is dead. Change my mind. [4] текст от Engeneering director в Clickhouse о том как меняется (может поменяться) BI в ближайшее время. TLDR: LLM + MCP + LibreChat. Чтение полезное для всех кто занимается внутренней аналитикой и использует Clickhouse
- Roadmap: Data 3.0 in the Lakehouse Era [5] изменения в экосистеме управления данными с точки зрения венчурного капитала. Простым языком для тех кто инвестирует средства в то какие новые технологии в дата инженерии появились и развиваются.
Ссылки:
[1] https://blog.cloudflare.com/r2-data-catalog-public-beta/
[2] https://github.com/xorq-labs/xorq
[3] https://roundup.getdbt.com/p/iceberg-give-it-a-rest
[4] https://www.linkedin.com/pulse/bi-dead-change-my-mind-dmitry-pavlov-2otae/
[5] https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
#opensource #dataanalytics #datatools #dataengineering
- Cloudflare R2 data catalog [1] свежий каталог данных на базе Apache Iceberg от Cloudflare поверх их сервиса хранения файлов R2. Хорошая новость, потому что R2 дешевле Amazon S3 при сравнимом качестве сервиса. Жду когда Backblaze запустит аналогичный сервис для их Backblaze B2
- xorq [2] читается как zork, фреймворк для обработки данных с помощью разных движков. Там и DuckDB, и Pandas, и DataFusion и др. Удобство в универсальности, но продукт пока малоизвестный, надо смотреть
- Iceberg?? Give it a REST! [3] автор рассуждает о том что без REST каталога Iceberg малополезен и, в принципе, про развитие этой экосистемы. Многие уже рассматривают стремительный взлёт Iceberg как хайп, что не отменяет того что технология весьма любопытная.
- BI is dead. Change my mind. [4] текст от Engeneering director в Clickhouse о том как меняется (может поменяться) BI в ближайшее время. TLDR: LLM + MCP + LibreChat. Чтение полезное для всех кто занимается внутренней аналитикой и использует Clickhouse
- Roadmap: Data 3.0 in the Lakehouse Era [5] изменения в экосистеме управления данными с точки зрения венчурного капитала. Простым языком для тех кто инвестирует средства в то какие новые технологии в дата инженерии появились и развиваются.
Ссылки:
[1] https://blog.cloudflare.com/r2-data-catalog-public-beta/
[2] https://github.com/xorq-labs/xorq
[3] https://roundup.getdbt.com/p/iceberg-give-it-a-rest
[4] https://www.linkedin.com/pulse/bi-dead-change-my-mind-dmitry-pavlov-2otae/
[5] https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
#opensource #dataanalytics #datatools #dataengineering
The Cloudflare Blog
R2 Data Catalog: Managed Apache Iceberg tables with zero egress fees
R2 Data Catalog is now in public beta: a managed Apache Iceberg data catalog built directly into your R2 bucket.
Forwarded from Ivan Begtin (Ivan Begtin)
Model Context Protocol (MCP) был разработан компанией Anthropic для интеграции существующих сервисов и данных в LLM Claude. Это весьма простой и неплохо стандартизированный протокол с вариантами референсной реализации на Python, Java, Typescript, Swift, Kotlin, C# и с большим числом реализаций на других языках.
Тысячи серверов MCP уже доступны и вот основные ресурсы где можно их искать:
- Model Context Protocol servers - большой каталог на Github
- Awesome MCP Servers - ещё один большой каталог с переводом на несколько языков
- Pipedream MCP - интеграция с 12.5 тысяч API и инструментов через сервис Pipedream
- Zapier MCP - интеграция с 8 тысячами приложений через сервис Zapier
- Smithery - каталог MCP серверов, 6200+ записей по множеству категорий
- MCP.so - каталог в 13100+ MCP серверов
Похоже мода на MCP пришла надолго и пора добавлять его к своим продуктам повсеместно.
#ai #opensource #aitools
Тысячи серверов MCP уже доступны и вот основные ресурсы где можно их искать:
- Model Context Protocol servers - большой каталог на Github
- Awesome MCP Servers - ещё один большой каталог с переводом на несколько языков
- Pipedream MCP - интеграция с 12.5 тысяч API и инструментов через сервис Pipedream
- Zapier MCP - интеграция с 8 тысячами приложений через сервис Zapier
- Smithery - каталог MCP серверов, 6200+ записей по множеству категорий
- MCP.so - каталог в 13100+ MCP серверов
Похоже мода на MCP пришла надолго и пора добавлять его к своим продуктам повсеместно.
#ai #opensource #aitools
Model Context Protocol
Introduction - Model Context Protocol
Get started with the Model Context Protocol (MCP)
Forwarded from Ivan Begtin (Ivan Begtin)
Для тех кто любит не только читать, но и слушать книжки. Audiblez [1] генератор аудиокниг по текстам, с открытым кодом, командной строкой и UI интерфейсом. Поддерживает английский, испанский, французский, хинди, итальянский, японский, португальский и китайский. Русский не поддерживает и даже армянского языка нет - это минус, в основном из-за того что внутри используется Kokoro-82M [2] модель где только эти языки. Можно выбрать книгу в epub формате и голос и создать аудиокнигу.
Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.
Лицензия MIT.
Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M
#opensource #ai #books #readings
Сама генерация аудиокниги весьма ресурсоёмкая, но реалистичная.
Лицензия MIT.
Ссылки:
[1] https://github.com/santinic/audiblez
[2] https://huggingface.co/hexgrad/Kokoro-82M
#opensource #ai #books #readings
GitHub
GitHub - santinic/audiblez: Generate audiobooks from e-books
Generate audiobooks from e-books. Contribute to santinic/audiblez development by creating an account on GitHub.
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки для работы с данными, технологиями и не только:
- DocsGPT и LocalGPT два похожих продукта для извлечения знаний и чата с локальными документами. Первый под лицензией MIT, второй под Apache 2.0. Поддерживают множество форматов документов, работают с облачными и локальными моделями ИИ. Какой лучше не знаю, надо пробовать оба продукта.
- Markitdown утилита от Microsoft по преобразованию чего угодно в формат markdown. Поддерживает документы MS Office, PDF, HTML, аудио и изображения и многое другое.
- AI Dataset generator генератор синтетических наборов данных с помощью ИИ. Умеет подключаться к разным LLM и интегрировано с инструментом визуализации Metabase. Открытый код, лицензия MIT
- gt-extras расширение для пакета great-tables для Python позволяющее рисовать красивые таблицы в Python в средах научных тетрадок Jupyter или в Quatro из фреймов данных Pandas и Polars. Удобное для всех кто занимается аналитикой на данных
- OpenAIRE changelog хороший пример версионирования и журнала большого открытого дата-продукта.
#opensource #data #datatools
- DocsGPT и LocalGPT два похожих продукта для извлечения знаний и чата с локальными документами. Первый под лицензией MIT, второй под Apache 2.0. Поддерживают множество форматов документов, работают с облачными и локальными моделями ИИ. Какой лучше не знаю, надо пробовать оба продукта.
- Markitdown утилита от Microsoft по преобразованию чего угодно в формат markdown. Поддерживает документы MS Office, PDF, HTML, аудио и изображения и многое другое.
- AI Dataset generator генератор синтетических наборов данных с помощью ИИ. Умеет подключаться к разным LLM и интегрировано с инструментом визуализации Metabase. Открытый код, лицензия MIT
- gt-extras расширение для пакета great-tables для Python позволяющее рисовать красивые таблицы в Python в средах научных тетрадок Jupyter или в Quatro из фреймов данных Pandas и Polars. Удобное для всех кто занимается аналитикой на данных
- OpenAIRE changelog хороший пример версионирования и журнала большого открытого дата-продукта.
#opensource #data #datatools
GitHub
GitHub - arc53/DocsGPT: Private AI platform for agents, assistants and enterprise search. Built-in Agent Builder, Deep research…
Private AI platform for agents, assistants and enterprise search. Built-in Agent Builder, Deep research, Document analysis, Multi-model support, and API connectivity for agents. - arc53/DocsGPT
Forwarded from Ivan Begtin (Ivan Begtin)
Полезные ссылки про данные, технологии и не только:
- DuckDB XML Extension - расширение для DuckDB для парсинга XML/HTML, пока не пробовал и интересно как он сможет съесть XML в пару пару десятков гигабайт, но выглядит полезно
- remote-jobs - репозиторий с огромным числом IT компаний имеющих вакансии для дистанционной работы. Некоторые компании remote-only, без офисов, в некоторых гибридный подход, в любом случае список полезный для тех кто ищет работу дистанционно
- Embedding User-Defined Indexes in Apache Parquet Files - для тех кто хочет поглубже разобраться с тем что такое Parquet, разбор реализации специализированного индекса внутри Parquet файлов.
- Rethinking CLI interfaces for AI у автора рефлексия о переосмыслении подхода к созданию и развитию утилит командной строки в контексте MCP и LLM. Текст довольно короткий, но здравый
- Edit перевыпуск древнего редактора Edit для MS-DOS переписанного на Rust под множество платформ. Для тех кого пробивает на ностальгию, но у меня лично по Edit'у никакой ностальгии не осталось, он мне не нравился ещё тогда;)
#opensource #ai #datatools
- DuckDB XML Extension - расширение для DuckDB для парсинга XML/HTML, пока не пробовал и интересно как он сможет съесть XML в пару пару десятков гигабайт, но выглядит полезно
- remote-jobs - репозиторий с огромным числом IT компаний имеющих вакансии для дистанционной работы. Некоторые компании remote-only, без офисов, в некоторых гибридный подход, в любом случае список полезный для тех кто ищет работу дистанционно
- Embedding User-Defined Indexes in Apache Parquet Files - для тех кто хочет поглубже разобраться с тем что такое Parquet, разбор реализации специализированного индекса внутри Parquet файлов.
- Rethinking CLI interfaces for AI у автора рефлексия о переосмыслении подхода к созданию и развитию утилит командной строки в контексте MCP и LLM. Текст довольно короткий, но здравый
- Edit перевыпуск древнего редактора Edit для MS-DOS переписанного на Rust под множество платформ. Для тех кого пробивает на ностальгию, но у меня лично по Edit'у никакой ностальгии не осталось, он мне не нравился ещё тогда;)
#opensource #ai #datatools
Forwarded from Ivan Begtin (Ivan Begtin)
Стандарты работы с данными о которых вы могли ничего ранее не слышать:
- Oxford Common File Layout (OCFL) [1] спецификация описывающая способ хранения цифровых объектов независимо от использующего приложения с прицелом на долгосрочное хранение и использование. Используется, преимущественно, в академических проектах хранения цифровых объектов [2]
- Research Object Crate (RO-Crate) [3] "легковесная" спецификация для упаковки исследовательских данных вместе с метаданными. Отличается большим числом разных профилем под разные научные дисциплины [4]. Стандарт уже довольно зрелый, активно применяется во многих исследовательских проектах.
- The Open Data Product Standard (ODPS) [5] открытый стандарт описания дата продуктов из проекта Bitlol при Linux Foundation. Судя по спецификации всё ещё сыровато [6] и сама подача стандартов мне не очень нравится, я лично больше предпочитаю читать их в W3C стиле, но тем не менее, спецификаций на дата продукты как дата продукты мало. Текущая версия 0.9, явно ещё будет меняться
- The BagIt File Packaging Format (BagIt) [7] стандарт хранения цифровых объектов, в том числе данных, от библиотеки Конгресса США. В 2018 году его приняли как RFC 8493, но и до этого он давно существовал. Стандарт OCFL создавался как доработка BagIt поскольку в BagIt не было предусмотрено версионирование.
- FAIR4ML Metadata Schema [8] спецификация метаданных для описания моделей для машинного обучения, включая расширение для Schema.org. В основе спецификация для публикации кода Codemeta [9] тоже в виде расширения для Schema.org
Ссылки:
[1] https://ocfl.io
[2] https://github.com/OCFL/spec/wiki/Implementation
[3] https://www.researchobject.org/ro-crate/
[4] https://www.researchobject.org/ro-crate/profiles
[5] https://bitol.io/announcing-odps-major-step-toward-standardizing-data-products/
[6] https://github.com/bitol-io/open-data-product-standard/tree/main/docs
[7] https://datatracker.ietf.org/doc/html/rfc8493
[8] https://rda-fair4ml.github.io/FAIR4ML-schema/release/0.1.0/index.html
[9] https://codemeta.github.io/
#openstandards #opensource #readings
- Oxford Common File Layout (OCFL) [1] спецификация описывающая способ хранения цифровых объектов независимо от использующего приложения с прицелом на долгосрочное хранение и использование. Используется, преимущественно, в академических проектах хранения цифровых объектов [2]
- Research Object Crate (RO-Crate) [3] "легковесная" спецификация для упаковки исследовательских данных вместе с метаданными. Отличается большим числом разных профилем под разные научные дисциплины [4]. Стандарт уже довольно зрелый, активно применяется во многих исследовательских проектах.
- The Open Data Product Standard (ODPS) [5] открытый стандарт описания дата продуктов из проекта Bitlol при Linux Foundation. Судя по спецификации всё ещё сыровато [6] и сама подача стандартов мне не очень нравится, я лично больше предпочитаю читать их в W3C стиле, но тем не менее, спецификаций на дата продукты как дата продукты мало. Текущая версия 0.9, явно ещё будет меняться
- The BagIt File Packaging Format (BagIt) [7] стандарт хранения цифровых объектов, в том числе данных, от библиотеки Конгресса США. В 2018 году его приняли как RFC 8493, но и до этого он давно существовал. Стандарт OCFL создавался как доработка BagIt поскольку в BagIt не было предусмотрено версионирование.
- FAIR4ML Metadata Schema [8] спецификация метаданных для описания моделей для машинного обучения, включая расширение для Schema.org. В основе спецификация для публикации кода Codemeta [9] тоже в виде расширения для Schema.org
Ссылки:
[1] https://ocfl.io
[2] https://github.com/OCFL/spec/wiki/Implementation
[3] https://www.researchobject.org/ro-crate/
[4] https://www.researchobject.org/ro-crate/profiles
[5] https://bitol.io/announcing-odps-major-step-toward-standardizing-data-products/
[6] https://github.com/bitol-io/open-data-product-standard/tree/main/docs
[7] https://datatracker.ietf.org/doc/html/rfc8493
[8] https://rda-fair4ml.github.io/FAIR4ML-schema/release/0.1.0/index.html
[9] https://codemeta.github.io/
#openstandards #opensource #readings