Tensorflow(@CVision)
14.3K subscribers
1.21K photos
261 videos
70 files
2.35K links
اخبار حوزه یادگیری عمیق و هوش مصنوعی
مقالات و یافته های جدید یادگیری عمیق
بینایی ماشین و پردازش تصویر

TensorFlow, Keras, Deep Learning, Computer Vision

سایت دوره
http://class.vision

👨‍💻👩‍💻پشتیبان دوره ها:
@classvision_support
Download Telegram
در انتقال یادگیری از لایه‌های میانی غافل نشوید

در سناریو انتقال یادگیری و هنگامی که بخواهیم شبکه پیش آموزش دیده روی تسک مبدا را برای تسک مقصد استفاده کنیم، دو راه پیش‌روی خود داریم. راه اول این است که شبکه را به اصطلاح فریز کنیم و یک لایه خطی روی فیچر‌های لایه آخر شبکه برای تسک مقصد استفاده کنیم. راه دوم هم این است که کل شبکه را مورد فاین تیون قرار بدهیم. حالا مقاله‌ای اومده که نشون داده راه سومی هم جز این دو هست و این راه فریزکردن شبکه و در عین حال سوارکردن یک لایه خطی بر روی فیچرهای تمام لایه‌های میانی شبکه است (نه فقط فیچرهای لایه آخر). در واقع سوالی که منجر به این ایده شده این بوده که Fine-tuning با این که پیچیدگی و تعداد پارامتر بیشتری نسبت به حالت فریزکردن مدل داره چرا بهتر عمل میکنه؟ نکنه در سناریو Fine-tuning صرفا فیچرهای میانی شبکه دارند به آخر شبکه پاس داده می‌شوند؟؟)

این مقاله ابتدا اومده imagenet رو به عنوان تسک مبدا در نظر گرفته و ۱۹ دیتاست دیگه مثل Cifar100 و Clevr و Pets و ... رو به عنوان تسک مقصد در نظر گرفته. سپس یک مقداری تحت عنوان domain affinity محاسبه کرده که نشون میده هر کدوم از این ۱۹ تسک مقصد چه قدر به imagenet نزدیک هستند. حالا اومدند و برای هر کدوم از این دیتاست‌ها سه سناریو دسته‌بند خطی روی شبکه مبدا فریزشده (Linear)، فاین تیون‌کردن شبکه مبدا (Fine-tuning) و اموزش دادن از اول (Scratch) و نتایج این روشها رو تو عکس figure2 ای که مشاهده میکنید گذاشتند. در این نمودار دیتاست های سمت چپ دارای affinity کمتر و دیتاست‌های سمت راست دارای affinity بیشتری هستند. نمودار نشون میده که برای دیتاست‌های چپ سناریو Scratch جواب‌بهتری از بقیه میده و برای دیتاست‌های راست هم سناریو Linear جواب خوبی میده ( که منطقی هم هست).

در گام بعدی مقاله اومده و مدل خودش یعنی Head2Toe رو مطرح کرده. در این مدل ابتدا شبکه مبدا (همون پیش آموزش دیدهه روی imagent) فریز میشه و سپس تمامی فیچر‌های میانی شبکه انتخاب می‌شوند. از اونجایی که سایز اینها خب زیاده فیچرهای هر لایه توسط یک مکانیزم pooling ابعادشون کاهش پیدا میکنه. در نهایت تمامی این فیچرهای کاهش بعد داده شده تمامی لایه‌ها با هم کانکت می‌شوند و یک بردار ویژگی بزرگ به دست میاد (اسمش رو h_all بذارید). از اونجایی که این h_all هم بزرگه و آموزش دادن کلاسیفایر خطی روش ممکنه منجر به اورفیت بشه، مقاله اومده از رگولاریزیشن Group lasso برای آموزش یک دسته‌بند خطی روی این بردار بزرگ استفاده کرده تا وزن‌هایی که به دست میان اسپارس باشن و هم به نوعی عمل فیچر سلکشن رو روی h_all انجام داده. در نهایت هم اومدن head2Toe رو روی اون ۱۹ دیتاست مختلف اجرا کردند و نشون دادند که در میانگین روششون بهتر از سناریو‌های دیگه نظیر Linear و حتی Fine-tune داره عمل میکنه!

لینک مقاله:
https://arxiv.org/abs/2201.03529

#read
#paper

🙏Thanks to: @nlp_stuff 🌹
مدل‌های استدلالی (reasoning) چیست و چگونه ساخته می‌شوند؟

حتما این روزها بارها مدل‌های استدلالی مثل DeepSeek R1 به گوش و چشمتون خورده. اگر هنوز دقیق نمی‌دونید این مدلها معنیشون چیه و کجا به درد میخورند، بیاید که دواتون پیش آقای سباستین راشکا (نویسنده کتاب Build a Large Language Model From Scratch) هست. ایشون یه بلاگ مشتی راجع به مدل‌های استدلالی (همون reasoning) نوشته و مثل همیشه خیلی خوب داستان را شفاف کرده. این را داشته باشید تا منابع بعدی.

مواردی که در این بلاگ توضیح میده:
- تعریف مدل استدلالی چیه؟
- کجا باید از این مدل‌ها استفاده کنیم؟
- پایپلاین پشت R1 چیه؟
- چهار روش اصلی برای ساختن و بهبود مدلهای استدلالی چیه؟
- نکاتی پیرامون مدل R1
- نکاتی برای توسعه مدل‌های استدلالی با بودجه بسیار کم (حتی به اندازه دانشگاه‌های ایران کم ☺️)

اول میگه استدلال (reasoning) واسه وقتیه که سوالی را حل کنیم که نیاز به راه‌حل پیچیده و چندمرحله‌ای داره. مثلا پایتخت فرانسه کجاست اینجوری نیست ولی مثلا حل یه سوال فیزیک و ریاضی یا سوال acmای اینجوریه.

بعد میاد میگه سه جا خوب نیست اصلا از این مدل‌ها استفاده کنیم:
- وقتی ما نیاز به سرعت و قیمت پایین داریم
- وقتی سوال‌های دانشی (knowledge based) مثل همین پایتخت داریم چون این مدل‌ها دچار هذیان‌گویی میشن
- سوالات ساده چون این مدل‌ها مثل اکثر ما overthink میکنند

در ادامه میاد پایپلاین R1 را به شکل بسیار روان و ساده‌ای توضیح میده. عکس ضمیمه یک کلیتی از این پایپلاینه. میگه deepseek سه تا مدل داده: DeepSeek-R1-Zero، DeepSeek-R1 و DeepSeek-R1-Distill.
اول. با مدل DeepSeek-V3 که سپتامبر بیرون دادن، با یک RL cold start (بدون SFT) شبیه همون RLHF با دو تا reward (یکی دقت و دومی فرمت به جای ترجیح آدمیزاد) آموزش میده؛ و مدل DeepSeek-R1-Zero را درست میکنه. بعد از همین مدل میاد یه داده SFT بزرگ درست میکنه. ریوارد دقت میاد از leetcode استفاده میکنه که نتیجه کد را مستقیما اجرا کنه و بگه!! فرمت هم میاد از یه سری تگ استفاده میکنه که دقیقا با همون فرمت جواب بده.
دوم. بعد دوباره همون مدل زبانی اولیه سپتامبری DeepSeek-V3 را با همین دیتا SFT که در مرحله قبل ساخته شده بود یه بار فاین تیون میکنه و دوباره همون RL رو میزنه. این بار ولی بهش consistency هم اضافه میکنه که مدل سر چند زبانه بودن پنالتی نزنه. از همین مدل دو تا دیتاست SFT میسازه که یکیش با اندازه ۶۰۰ هزارتا chaing of thoughts داره و دیگری با اندازه ۲۰۰هزارتا knowldegeای هستش. بعد میاد یه RL دیگه هم میزنه که دیتاش کد و ریاضی هست. اینجا مدل DeepSeek R1 معروف ساخته میشه.
سوم. از اون دوتا دیتای SFT هم برای آموزش مدل‌های distill استفاده میکنه. البته اینجا distill مثل اون معروفه نیست، اینجا وقتی دیتای sft رو یه مدل قوی درست میکنه و مدل کوچیک (نیم الی ۷۰ میلیاردی) باهاش فاین تیون میشه، بهش میگن distillation.

خلاصه چهار تا روش برای تولید مدل استدلالی میگه:
- روش inference-time scaling: که از پرامپت و اینا استفاده میشه. منابع بیشتری لازمه. گرونتر هم درمیاد چون خیلی حرف میزنه.
- روش RL خالص مثل DeepSeek-R1-Zero
- روش SFT + RL مثل DeepSeek-R1
- روش SFT خالص با distillation: مثل DeepSeek-R1-Distill-Qwen
برای هر کدوم میزان کارایی رو توضیح میده و نهایتا میگه حالت سوم بهترین نتیجه رو میده ولی موارد دیگه هم چیزای جالبی بهمون یاد میده مثل اینکه RL خالی هم به استدلال مدل خیلی کمک میکنه.

در این بلاگ حدس‌های خوبی هم راجع به اینکه O1 و mini-O1 هم چطور آموزش داده شدند میگه که O1 ترکیب سوم و اولیه و o1-mini روش چهارم هست.

در نهایت هم میاد نظراتش رو راجع به R1 vs O1 میگه: در کل شبیه هم هستند ولی R1 بهینه‌تر و ارزانتره که دلیلش رو این میدونه که دیپ‌سیک بیشتر روی آموزش مدل وقت گذاشته ولی o1 روی inference-time رفته. و چون ما اندازه مدل o1 رو نمیدونیم خیلی مقایسه منصفانه‌ای نخواهیم داشت. درباره‌ی هزینه هم میگه این ۶ میلیون دلار که معروف شده ترکیب DeepSeek-R1 (همون سپتامبریه که پایه‌ی R1 هست) و R1 هستش ولی هزینه R1 رو دیپ‌سیک مشخص نکرده.

برای موضوع آخر هم میگه کسایی که پول کم هم دارند خوبه برن سراغ Distillation: به لطف مقاله مفصلی که برای R1 نوشتند مشخص شد که این روش هم خیلی موثره. مثلا میگه مقاله‌ای اومده یه مدل به نام Sky-T1 منتشر کرده که با ۴۵۰ دلار (۴۰ تومن) مدل ۳۲ میلیاردی را با ۱۷ هزارتا دیتای sft یه فاین تیون هدفمند کرده و در مواردی شبیه o1 عمل کرده!! موارد مهمی هم ادامش راجع به Journey Learning میگه که دیگه توی پست جا نمیشه :))

لینک پست:
https://sebastianraschka.com/blog/2025/understanding-reasoning-llms.html

#read
#blog

🙏Thanks to: @nlp_stuff