✏️Title:
#Unsupervised #Representation Learning with #Deep #Convolutional #Generative #Adversarial Networks
✏️abstract:
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.
🔗https://arxiv.org/pdf/1511.06434v2.pdf
"Under review as a conference paper at ICLR 2016"
#Unsupervised #Representation Learning with #Deep #Convolutional #Generative #Adversarial Networks
✏️abstract:
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.
🔗https://arxiv.org/pdf/1511.06434v2.pdf
"Under review as a conference paper at ICLR 2016"
Tensorflow(@CVision)
Learning from Simulated and Unsupervised Images through Adversarial Training (Apple Inc.)
مقالهی جالب کمپانی اپل!
( Submitted for review to a conference on Nov 15, 2016)
✏️Title:
Learning from Simulated and Unsupervised Images through Adversarial Training
✏️abstract:
With recent progress in graphics, it has become more tractable to train models on #synthetic images, potentially avoiding the need for expensive annotations. However, learning from synthetic images may not achieve the desired performance due to a gap between synthetic and real image distributions. To reduce this gap, we propose Simulated+Unsupervised (S+U) learning, where the task is to learn a model to improve the realism of a simulator's output using #unlabeled real data, while preserving the annotation information from the simulator. We develop a method for S+U learning that uses an #adversarial network similar to #Generative Adversarial Networks (#GANs), but with synthetic images as inputs instead of random vectors. We make several key modifications to the standard GAN algorithm to preserve annotations, avoid artifacts and stabilize training: (i) a 'self-regularization' term, (ii) a local adversarial loss, and (iii) updating the discriminator using a history of refined images. We show that this enables generation of highly realistic images, which we demonstrate both qualitatively and with a user study. We quantitatively evaluate the generated images by training models for gaze estimation and hand pose estimation. We show a significant improvement over using synthetic images, and achieve state-of-the-art results on the MPIIGaze dataset without any labeled real data.
🔗https://arxiv.org/abs/1612.07828v1
🔗https://arxiv.org/pdf/1612.07828v1.pdf
#unlabeled_data #unsupervised #unsupervised_learning #Generative #Generative_Models
( Submitted for review to a conference on Nov 15, 2016)
✏️Title:
Learning from Simulated and Unsupervised Images through Adversarial Training
✏️abstract:
With recent progress in graphics, it has become more tractable to train models on #synthetic images, potentially avoiding the need for expensive annotations. However, learning from synthetic images may not achieve the desired performance due to a gap between synthetic and real image distributions. To reduce this gap, we propose Simulated+Unsupervised (S+U) learning, where the task is to learn a model to improve the realism of a simulator's output using #unlabeled real data, while preserving the annotation information from the simulator. We develop a method for S+U learning that uses an #adversarial network similar to #Generative Adversarial Networks (#GANs), but with synthetic images as inputs instead of random vectors. We make several key modifications to the standard GAN algorithm to preserve annotations, avoid artifacts and stabilize training: (i) a 'self-regularization' term, (ii) a local adversarial loss, and (iii) updating the discriminator using a history of refined images. We show that this enables generation of highly realistic images, which we demonstrate both qualitatively and with a user study. We quantitatively evaluate the generated images by training models for gaze estimation and hand pose estimation. We show a significant improvement over using synthetic images, and achieve state-of-the-art results on the MPIIGaze dataset without any labeled real data.
🔗https://arxiv.org/abs/1612.07828v1
🔗https://arxiv.org/pdf/1612.07828v1.pdf
#unlabeled_data #unsupervised #unsupervised_learning #Generative #Generative_Models
Generative Adversarial Denoising Autoencoder for #Face Completion
pic: http://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/images/one.png
🔗http://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/
#GAN
#Generative #adversarial #Generative_Models #Autoencoder
pic: http://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/images/one.png
🔗http://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/
#GAN
#Generative #adversarial #Generative_Models #Autoencoder
Tensorflow(@CVision)
در این سایت نقاشی بکشید, و نقاشی شما تبدیل به شئ میشود ... https://affinelayer.com/pixsrv/
Image-to-Image Translation in #Tensorflow
در این کار شبکه های شرطی در مقابل حریف آموزش دیده اند که یک نگاشت از تصویر ورودی به تصویر خروجی بیابند به نحوی که بتواند با لبه ها به عنوان وردی، اشیاء و تصویر شبیه به واقعی بازسازی کند.
✒️ Image-to-Image Translation with Conditional Adversarial Nets
🔗 https://phillipi.github.io/pix2pix/
✒️Image-to-Image Demo:
🔗 https://affinelayer.com/pixsrv/
✒️Tensorflow port of Image-to-Image Translation with Conditional Adversarial Nets
🔗https://github.com/affinelayer/pix2pix-tensorflow
#conditional #adversarial networks
در این کار شبکه های شرطی در مقابل حریف آموزش دیده اند که یک نگاشت از تصویر ورودی به تصویر خروجی بیابند به نحوی که بتواند با لبه ها به عنوان وردی، اشیاء و تصویر شبیه به واقعی بازسازی کند.
✒️ Image-to-Image Translation with Conditional Adversarial Nets
🔗 https://phillipi.github.io/pix2pix/
✒️Image-to-Image Demo:
🔗 https://affinelayer.com/pixsrv/
✒️Tensorflow port of Image-to-Image Translation with Conditional Adversarial Nets
🔗https://github.com/affinelayer/pix2pix-tensorflow
#conditional #adversarial networks
phillipi.github.io
Image-to-Image Translation with Conditional Adversarial Networks
Generating Videos with Scene Dynamics
video: http://bit.ly/2q6THM9
تبدیل تصویر به فیلم.
هوش مصنوعی ای که قادر است تنها با یک تصویر ثابت، فیلم چند ثانیه ای حاوی حرکت خروجی دهد...
در این روش به صورت بدون ناظر دو سال ویدیوی جمع آوری از فلیکر به شبکه آموزش داده شده است، سپس شبکه توانسته که نگاشتی از تصاویر به فیلم های چند ثانیه ای ایجاد کند.
🔗 http://web.mit.edu/vondrick/tinyvideo/
#generative #adversarial #GAN #deep_learning
video: http://bit.ly/2q6THM9
تبدیل تصویر به فیلم.
هوش مصنوعی ای که قادر است تنها با یک تصویر ثابت، فیلم چند ثانیه ای حاوی حرکت خروجی دهد...
در این روش به صورت بدون ناظر دو سال ویدیوی جمع آوری از فلیکر به شبکه آموزش داده شده است، سپس شبکه توانسته که نگاشتی از تصاویر به فیلم های چند ثانیه ای ایجاد کند.
🔗 http://web.mit.edu/vondrick/tinyvideo/
#generative #adversarial #GAN #deep_learning
YouTube
Creating Videos of the Future
More info: http://www.csail.mit.edu/creating_videos_of_the_future Paper: http://web.mit.edu/vondrick/tinyvideo/paper.pdf
#مقاله
✔️ایجاد یک نگاشت از تصور به تصویر:
در این کار شبکه های شرطی در مقابل حریف (GAN) آموزش دیده اند که یک نگاشت از تصویر ورودی به تصویر خروجی بیابند...
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
[UC Berkeley] pic: http://bit.ly/2s2OTsm
🔗abstract:
https://arxiv.org/abs/1703.10593
🔗Paper:
https://arxiv.org/pdf/1703.10593.pdf
🔗Project Page:
https://junyanz.github.io/CycleGAN/
🔗codes:
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
Our goal is to learn a mapping G: X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
مرتیط به مقاله ی:
https://t.me/cvision/171
#CycleGAN #GAN #Generative #CNN #Convolutional #deep_learning #adversarial #Generative_Models #Generative
✔️ایجاد یک نگاشت از تصور به تصویر:
در این کار شبکه های شرطی در مقابل حریف (GAN) آموزش دیده اند که یک نگاشت از تصویر ورودی به تصویر خروجی بیابند...
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
[UC Berkeley] pic: http://bit.ly/2s2OTsm
🔗abstract:
https://arxiv.org/abs/1703.10593
🔗Paper:
https://arxiv.org/pdf/1703.10593.pdf
🔗Project Page:
https://junyanz.github.io/CycleGAN/
🔗codes:
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
Our goal is to learn a mapping G: X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
مرتیط به مقاله ی:
https://t.me/cvision/171
#CycleGAN #GAN #Generative #CNN #Convolutional #deep_learning #adversarial #Generative_Models #Generative
This media is not supported in your browser
VIEW IN TELEGRAM
تبدیل اسب به گورخر!
ایجاد نگاشت تصویر به تصویر توسط هوش مصنوعی...
اطلاعات بیشتر:
https://t.me/cvision/214
#CycleGAN #GAN #Generative #CNN #Convolutional #deep_learning #adversarial #generative
ایجاد نگاشت تصویر به تصویر توسط هوش مصنوعی...
اطلاعات بیشتر:
https://t.me/cvision/214
#CycleGAN #GAN #Generative #CNN #Convolutional #deep_learning #adversarial #generative
#آموزش در سایت ماکروسافت
Learning Image to Image Translation with CycleGANs
[Published June 12, 2017]
https://www.microsoft.com/reallifecode/2017/06/12/learning-image-image-translation-cyclegans/
مرتبط با https://t.me/cvision/214
#CycleGAN #GAN #Generative #CNN #Convolutional #deep_learning #adversarial #Generative_Models #Generative
Learning Image to Image Translation with CycleGANs
[Published June 12, 2017]
https://www.microsoft.com/reallifecode/2017/06/12/learning-image-image-translation-cyclegans/
مرتبط با https://t.me/cvision/214
#CycleGAN #GAN #Generative #CNN #Convolutional #deep_learning #adversarial #Generative_Models #Generative
Real Life Code
Learning Image to Image Translation with CycleGANs - Real Life Code
Microsoft has partnered with Getty Images to explore how Neural Nets could be used to transform the stock photo industry.
#مقاله
Perceptual Generative #Adversarial Networks for Small Object Detection
https://arxiv.org/abs/1706.05274
Perceptual Generative #Adversarial Networks for Small Object Detection
https://arxiv.org/abs/1706.05274
#مقاله #سورس_کد
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
+ PyTorch Implementation of StarGAN - #CVPR_2018
🔗abstract:
https://arxiv.org/abs/1711.09020
🔗Paper:
https://arxiv.org/pdf/1711.09020.pdf
🔗Code:
https://github.com/yunjey/StarGAN
🎬Video Demo:
https://www.youtube.com/watch?v=EYjdLppmERE
#GAN #stargan #pytorch #generative #adversarial
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
+ PyTorch Implementation of StarGAN - #CVPR_2018
🔗abstract:
https://arxiv.org/abs/1711.09020
🔗Paper:
https://arxiv.org/pdf/1711.09020.pdf
🔗Code:
https://github.com/yunjey/StarGAN
🎬Video Demo:
https://www.youtube.com/watch?v=EYjdLppmERE
#GAN #stargan #pytorch #generative #adversarial
GitHub
GitHub - yunjey/stargan: StarGAN - Official PyTorch Implementation (CVPR 2018)
StarGAN - Official PyTorch Implementation (CVPR 2018) - yunjey/stargan
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
+ کد
اطلاعات بیشتر
https://t.me/cvision/646
#GAN #stargan #pytorch #generative #adversarial
+ کد
اطلاعات بیشتر
https://t.me/cvision/646
#GAN #stargan #pytorch #generative #adversarial
#سورس_کد
[pic: https://t.me/cvision/870]
Image-to-Image Translation in #Tensorflow_js
Fast image-to-image translation in the #browser.
With 3 new trained models .
+ processed dataset of 1000 images for edges2cats translation.
Demo: https://zaidalyafeai.github.io/pix2pix/cats.html
Code(Tensorflow.js): https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix
مرتبط با:
https://t.me/cvision/863
https://t.me/cvision/171
https://t.me/cvision/170
#conditional #adversarial #GAN
#pix2pix
[pic: https://t.me/cvision/870]
Image-to-Image Translation in #Tensorflow_js
Fast image-to-image translation in the #browser.
With 3 new trained models .
+ processed dataset of 1000 images for edges2cats translation.
Demo: https://zaidalyafeai.github.io/pix2pix/cats.html
Code(Tensorflow.js): https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix
مرتبط با:
https://t.me/cvision/863
https://t.me/cvision/171
https://t.me/cvision/170
#conditional #adversarial #GAN
#pix2pix
Telegram
Tensorflow
Fast image-to-image translation in the browser
Online demo:
https://zaidalyafeai.github.io/pix2pix/cats.html
More + code:
https://t.me/cvision/869
Online demo:
https://zaidalyafeai.github.io/pix2pix/cats.html
More + code:
https://t.me/cvision/869
#مقاله
One pixel attack for fooling deep neural networks
در این مقاله تنها با تغییر یک پیکسل از تصویر موفق شده adversarial attack انجام بده وشبکه را فریب بده!
https://arxiv.org/abs/1710.08864
#adversarial
One pixel attack for fooling deep neural networks
در این مقاله تنها با تغییر یک پیکسل از تصویر موفق شده adversarial attack انجام بده وشبکه را فریب بده!
https://arxiv.org/abs/1710.08864
#adversarial
#مقاله
فریب شبکه های object detection در تشخیص افراد.
Fooling automated surveillance cameras: adversarial patches to attack person detection. https://arxiv.org/abs/1904.08653
🙏Thanks to: @vahidreza01
#adversarial #gan
فریب شبکه های object detection در تشخیص افراد.
Fooling automated surveillance cameras: adversarial patches to attack person detection. https://arxiv.org/abs/1904.08653
🙏Thanks to: @vahidreza01
#adversarial #gan
This media is not supported in your browser
VIEW IN TELEGRAM
#سورس_کد #مقاله
در این کار پچ هایی ایجاد و چاپ کردند که با وجود آنها الگوریتم شناسایی افراد روی شما کار نخواهد کرد و الگوریتم فریب خواهد خورد.
Fooling automated surveillance cameras: #adversarial patches to attack person detection
مقاله:
https://arxiv.org/abs/1904.08653
سورس کد:
https://gitlab.com/EAVISE/adversarial-yolo
#adversarial #adversarial_attack #person_detection
در این کار پچ هایی ایجاد و چاپ کردند که با وجود آنها الگوریتم شناسایی افراد روی شما کار نخواهد کرد و الگوریتم فریب خواهد خورد.
Fooling automated surveillance cameras: #adversarial patches to attack person detection
مقاله:
https://arxiv.org/abs/1904.08653
سورس کد:
https://gitlab.com/EAVISE/adversarial-yolo
#adversarial #adversarial_attack #person_detection