Deep learning
Yann LeCun, Yoshua Bengio & Geoffrey Hinton
http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html
#Deep_learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object #recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep #convolutional nets have brought about breakthroughs in processing #images, #video, #speech and #audio, whereas #recurrent nets have shone light on sequential data such as #text and speech.
Yann LeCun, Yoshua Bengio & Geoffrey Hinton
http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html
#Deep_learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object #recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep #convolutional nets have brought about breakthroughs in processing #images, #video, #speech and #audio, whereas #recurrent nets have shone light on sequential data such as #text and speech.
انسان در واقع اشیاء را بدون ناظر یاد میگیرد و بعد اینکه مثلا مدتی یک شی را دید و یاد گرفت، بلافاصله پس از اینکه نام آن شی را شنید برچسب آن را نیز یاد میگیرد.
در حال حاضر بهترین مدلهای بینایی ماشین که در سالهای اخیر، خصوصا بعد از الکسنت سال 2012 ارائه شده اند با ناظر هستند. خیلی خوب عمل میکنند اما به داده ی برچسب گذاری شده ی زیادی نیاز دارند.
اگر به نحوی بتوانیم از داده های بدون برچسب استفاده کنیم و مدل را آموزش دهیم، سپس در فاز کوتاهی با داده های اندک اشیائی که مدل یاد گرفته است را به صورت با ناظرآموزش دهیم تحول بزرگی در یادگیری مدل ها ایجاد خواهد شد. در این صورت میتوان به سادگی میلیون ها ساعت ویدیو را مثلا با استفاده از یوتیوب به مدل آموزش داد و پس از آموزش مدل، شروع به آموزش نام اشیاء یادگرفته شده به مدل پرداخت روندی که در انسان هم مشاهده میشود! در واقع کودک از بدو تولد اشیاء مختلف را میبیند و آن ها را یاد میگیرد اما با یک یا چند بارشنیدن نام آن به آن دسته یا شئی که قبلا فراگرفته نام اختصاص میدهد.
The Next Frontier in AI: Unsupervised Learning
#Yann_LeCun
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
https://www.youtube.com/watch?v=IbjF5VjniVE
Abstract
The rapid progress of #AI in the last few years are largely the result of advances in #deep_learning and neural nets, combined with the availability of large datasets and fast GPUs. We now have systems that can #recognize images with an accuracy that rivals that of humans. This will lead to revolutions in several domains such as autonomous transportation and #medical #image understanding. But all of these systems currently use #supervised learning in which the machine is trained with inputs labeled by humans. The challenge of the next several years is to let machines learn from raw, #unlabeled_data, such as #video or #text. This is known as #unsupervised learning. AI systems today do not possess "common sense", which humans and animals acquire by observing the world, acting in it, and understanding the physical constraints of it. Some of us see unsupervised learning as the key towards machines with common sense. Approaches to unsupervised learning will be reviewed. This presentation assumes some familiarity with the basic concepts of deep learning.
در حال حاضر بهترین مدلهای بینایی ماشین که در سالهای اخیر، خصوصا بعد از الکسنت سال 2012 ارائه شده اند با ناظر هستند. خیلی خوب عمل میکنند اما به داده ی برچسب گذاری شده ی زیادی نیاز دارند.
اگر به نحوی بتوانیم از داده های بدون برچسب استفاده کنیم و مدل را آموزش دهیم، سپس در فاز کوتاهی با داده های اندک اشیائی که مدل یاد گرفته است را به صورت با ناظرآموزش دهیم تحول بزرگی در یادگیری مدل ها ایجاد خواهد شد. در این صورت میتوان به سادگی میلیون ها ساعت ویدیو را مثلا با استفاده از یوتیوب به مدل آموزش داد و پس از آموزش مدل، شروع به آموزش نام اشیاء یادگرفته شده به مدل پرداخت روندی که در انسان هم مشاهده میشود! در واقع کودک از بدو تولد اشیاء مختلف را میبیند و آن ها را یاد میگیرد اما با یک یا چند بارشنیدن نام آن به آن دسته یا شئی که قبلا فراگرفته نام اختصاص میدهد.
The Next Frontier in AI: Unsupervised Learning
#Yann_LeCun
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
https://www.youtube.com/watch?v=IbjF5VjniVE
Abstract
The rapid progress of #AI in the last few years are largely the result of advances in #deep_learning and neural nets, combined with the availability of large datasets and fast GPUs. We now have systems that can #recognize images with an accuracy that rivals that of humans. This will lead to revolutions in several domains such as autonomous transportation and #medical #image understanding. But all of these systems currently use #supervised learning in which the machine is trained with inputs labeled by humans. The challenge of the next several years is to let machines learn from raw, #unlabeled_data, such as #video or #text. This is known as #unsupervised learning. AI systems today do not possess "common sense", which humans and animals acquire by observing the world, acting in it, and understanding the physical constraints of it. Some of us see unsupervised learning as the key towards machines with common sense. Approaches to unsupervised learning will be reviewed. This presentation assumes some familiarity with the basic concepts of deep learning.
YouTube
RI Seminar: Yann LeCun : The Next Frontier in AI: Unsupervised Learning
Yann LeCun
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
Abstract
The rapid progress of AI in the last few years are largely the result of advances in deep learning and neural nets, combined with…
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
Abstract
The rapid progress of AI in the last few years are largely the result of advances in deep learning and neural nets, combined with…
#آموزش
#Tensorflow Text classification with movie reviews
Hands on tutorial:
https://www.tensorflow.org/tutorials/keras/basic_text_classification
Video part 1:
Prepare your data for ML | Text Classification Tutorial Pt. 1 (Coding TensorFlow)
https://www.youtube.com/watch?v=BO4g2DRvL6U
Video part 2:
Designing a neural network | Text Classification Tutorial Pt. 2 (Coding TensorFlow)
https://www.youtube.com/watch?v=vPrSca-YjFg
#nlp #text
#Tensorflow Text classification with movie reviews
Hands on tutorial:
https://www.tensorflow.org/tutorials/keras/basic_text_classification
Video part 1:
Prepare your data for ML | Text Classification Tutorial Pt. 1 (Coding TensorFlow)
https://www.youtube.com/watch?v=BO4g2DRvL6U
Video part 2:
Designing a neural network | Text Classification Tutorial Pt. 2 (Coding TensorFlow)
https://www.youtube.com/watch?v=vPrSca-YjFg
#nlp #text
This media is not supported in your browser
VIEW IN TELEGRAM
Text classification using TensorFlow.js: An example of detecting offensive language in browser.
https://medium.com/tensorflow/text-classification-using-tensorflow-js-an-example-of-detecting-offensive-language-in-browser-e2b94e3565ce
#tensorflow_js #nlp #text_classification
https://medium.com/tensorflow/text-classification-using-tensorflow-js-an-example-of-detecting-offensive-language-in-browser-e2b94e3565ce
#tensorflow_js #nlp #text_classification
بهره گیری از دیپ لرلنیک به صورت built in در مرورگر کروم نسخه 74+
Chrome’s Face Detection API
🔹 (https://paul.kinlan.me/detecting-text-in-an-image/)Shape Detection in Images on the web in real-time
Face Detection API
Barcode Detection API
Text Detection API
paul.kinlan.me/detecting-text-in-an-image
Chrome’s Face Detection API
🔹 (https://paul.kinlan.me/detecting-text-in-an-image/)Shape Detection in Images on the web in real-time
Face Detection API
Barcode Detection API
Text Detection API
Chrome 74+wicg.github.io/shape-detection-api/#text-detection-api
paul.kinlan.me/detecting-text-in-an-image
paul.kinlan.me
Detecting text in an image on the web in real-time
Paul is a Developer Advocate for Chrome and the Open Web at Google and loves to help make web development easier.
ساخت و تولید دیتاست مصنوعی متن فارسی و انگلیسی با لیبل به صورت کاملا اتوماتیک و آسان.
یک تولید کننده دیتاست متن فارسی و انگلیسی با قابلیت انتخاب انواع فونت ها و استایل ها و متون رندوم یا انتخابی از دیکشنری و منبع دیتاست دلخواهتان با تعداد دیتای تولید شده دلخواه
با کمک این ابزار میتوانید دیتاست مورد نیاز برای آموزش شبکه های عمیق پردازش متن را به سرعت و آسان تولید کنید
A synthetic data generator for text recognition with latin, arabic and persian text support
https://github.com/amirmgh1375/TextRecognitionDataGenerator
#آموزش #سورس_کد #دیتاست
#synthetic_data #text_recognition #ctc
#ocr
#dataset_generator
یک تولید کننده دیتاست متن فارسی و انگلیسی با قابلیت انتخاب انواع فونت ها و استایل ها و متون رندوم یا انتخابی از دیکشنری و منبع دیتاست دلخواهتان با تعداد دیتای تولید شده دلخواه
با کمک این ابزار میتوانید دیتاست مورد نیاز برای آموزش شبکه های عمیق پردازش متن را به سرعت و آسان تولید کنید
A synthetic data generator for text recognition with latin, arabic and persian text support
https://github.com/amirmgh1375/TextRecognitionDataGenerator
#آموزش #سورس_کد #دیتاست
#synthetic_data #text_recognition #ctc
#ocr
#dataset_generator
طبقه بندی متن با استفاده از Flair
Flair delivers state-of-the-art performance in solving NLP problems such as named entity recognition (NER), part-of-speech tagging (PoS), sense disambiguation and text classification. It’s an NLP framework built on top of PyTorch.
لینک پست: https://towardsdatascience.com/text-classification-with-state-of-the-art-nlp-library-flair-b541d7add21f
کد: https://github.com/zalandoresearch/flair
#text_classification #nlp #flair
Flair delivers state-of-the-art performance in solving NLP problems such as named entity recognition (NER), part-of-speech tagging (PoS), sense disambiguation and text classification. It’s an NLP framework built on top of PyTorch.
لینک پست: https://towardsdatascience.com/text-classification-with-state-of-the-art-nlp-library-flair-b541d7add21f
کد: https://github.com/zalandoresearch/flair
#text_classification #nlp #flair
Medium
Text Classification with State of the Art NLP Library — Flair
Exciting news! A new version of Flair - state-of-the-art NLP library has just been released. Learn how to use it for text classification