#آموزش
Multi-task learning
فرض کنید در هر تصویر ورودی چندین شئ ظاهر میشود و میخواهیم وجود یا عدم وجود هر 4 شئ را اعلام کنیم.
روش اولی که به ذهن میرسد آموزش 4 طبقه بند مجزا برای هر یک از کلاس ها و اعمال این 4 طبقه بند بر روی هر تصویر ورودی است.
روش بهتری که وجود دارد آموزش یک شبکه عصبی واحد برای هر چهار کلاس است. برای این مثال در لایه ی آخر چهار نوران خواهیم داشت و به جای softmax باید از logistic loss استفاده کنیم که هر نوران احتمال حضور و عدم حضور شی مربوطه را اعلام کند. در این حالت طبیعتا دیگر جمع نوران ها 1 نخواهد بود و امکان 1 شدن همزمان هر 4 نوران وجود دارد (هر 4 شی در تصویر با احتمال 100 درصد تشخیص داده شوند.)
جدا از بحث بهبود سرعت پردازش این روش کارایی بیشتر و در نتیجه خطای کمتری برای هر 4 تسک به ما میدهد، چرا که لایه های ابتدایی شبکه عصبی ما ویژگی های مشترکی از تصاویر استخراج میگند و با این روش دیتاست ما تعداد تصویر بیشتری خواهد داشت.
توصیه میکنم این ویدیوی Andrew Ng در رابطه با Multi task learning را ببینید:
http://bit.ly/2mJpG6r
🤔When multi-task learning makes sense❓
✔️Training on a set of tasks that could benefit from having shared lower-level features.
✔️Usually: Amount of data you have for each task is quite similar.
✔️Can train a big enough neural network to do well on all the tasks.
#multitask_learning #deep_learning
Multi-task learning
فرض کنید در هر تصویر ورودی چندین شئ ظاهر میشود و میخواهیم وجود یا عدم وجود هر 4 شئ را اعلام کنیم.
روش اولی که به ذهن میرسد آموزش 4 طبقه بند مجزا برای هر یک از کلاس ها و اعمال این 4 طبقه بند بر روی هر تصویر ورودی است.
روش بهتری که وجود دارد آموزش یک شبکه عصبی واحد برای هر چهار کلاس است. برای این مثال در لایه ی آخر چهار نوران خواهیم داشت و به جای softmax باید از logistic loss استفاده کنیم که هر نوران احتمال حضور و عدم حضور شی مربوطه را اعلام کند. در این حالت طبیعتا دیگر جمع نوران ها 1 نخواهد بود و امکان 1 شدن همزمان هر 4 نوران وجود دارد (هر 4 شی در تصویر با احتمال 100 درصد تشخیص داده شوند.)
جدا از بحث بهبود سرعت پردازش این روش کارایی بیشتر و در نتیجه خطای کمتری برای هر 4 تسک به ما میدهد، چرا که لایه های ابتدایی شبکه عصبی ما ویژگی های مشترکی از تصاویر استخراج میگند و با این روش دیتاست ما تعداد تصویر بیشتری خواهد داشت.
توصیه میکنم این ویدیوی Andrew Ng در رابطه با Multi task learning را ببینید:
http://bit.ly/2mJpG6r
🤔When multi-task learning makes sense❓
✔️Training on a set of tasks that could benefit from having shared lower-level features.
✔️Usually: Amount of data you have for each task is quite similar.
✔️Can train a big enough neural network to do well on all the tasks.
#multitask_learning #deep_learning
Coursera
Multi-task learning - deeplearning.ai | Coursera
Video created by deeplearning.ai for the course ...
#مقاله
در برخی از ویژگی های مربوط به چهره، دیتاست بزرگ برای آموزش کامل شبکه های عمیق در دسترس نیست، با توجه به شباهت ویژگیها در تسکهای مرتبط با چهره، این مقاله یک شبکه واحد برای آموزش تمام این تسکها در نظر گرفته و در نتیجه با افزایش داده حاصل از ترکیب دیتاست های مختلف در این حوزه شبکه در بسیاری از موارد به کارایی بالاتر از مدلهای مشابه شبکه تک کاربرده دست یافته است. بدین صورت لایه های پایینتر شبکه به خوبی برای استخراج ویژگیهای چهره آموزش میبینند.
[مرتبط با: https://t.me/cvision/446]
An All-In-One Convolutional Neural Network for Face Analysis
http://ieeexplore.ieee.org/abstract/document/7961718/
در این مقاله تسک های مرتبط با چهره انسان را به دو دستهی مستقل از سوژه و مرتبط با سوژه تقسیم کرده است.
1) وظایف مستقل، شامل تشخیص چهره، نقطه های کلیدی چهره، محلی سازی، پیش بینی لبخند،
2) وظایف وابسته، شامل برآورد سن، پیش بینی جنسیت و بازشناسی چهره.
در این شبکه وظایف مستقل از سوژه از لایه های پایین تر این شبکه کانولوشنال ورودی گرفته و وظایف وابسته به سوژه از آخرین لایه شبکه ورودی خود را برای محاسبه خروجی و تابع هزینه هر تسک استفاده کرده اند.
#multitask_learning #face #convolutional_neutral_network #deep_learning
در برخی از ویژگی های مربوط به چهره، دیتاست بزرگ برای آموزش کامل شبکه های عمیق در دسترس نیست، با توجه به شباهت ویژگیها در تسکهای مرتبط با چهره، این مقاله یک شبکه واحد برای آموزش تمام این تسکها در نظر گرفته و در نتیجه با افزایش داده حاصل از ترکیب دیتاست های مختلف در این حوزه شبکه در بسیاری از موارد به کارایی بالاتر از مدلهای مشابه شبکه تک کاربرده دست یافته است. بدین صورت لایه های پایینتر شبکه به خوبی برای استخراج ویژگیهای چهره آموزش میبینند.
[مرتبط با: https://t.me/cvision/446]
An All-In-One Convolutional Neural Network for Face Analysis
http://ieeexplore.ieee.org/abstract/document/7961718/
در این مقاله تسک های مرتبط با چهره انسان را به دو دستهی مستقل از سوژه و مرتبط با سوژه تقسیم کرده است.
1) وظایف مستقل، شامل تشخیص چهره، نقطه های کلیدی چهره، محلی سازی، پیش بینی لبخند،
2) وظایف وابسته، شامل برآورد سن، پیش بینی جنسیت و بازشناسی چهره.
در این شبکه وظایف مستقل از سوژه از لایه های پایین تر این شبکه کانولوشنال ورودی گرفته و وظایف وابسته به سوژه از آخرین لایه شبکه ورودی خود را برای محاسبه خروجی و تابع هزینه هر تسک استفاده کرده اند.
#multitask_learning #face #convolutional_neutral_network #deep_learning
Telegram
Tensorflow(@CVision)
CNN that simultaneously performs #face_detection, #landmarks_localization, #pose_estimation, #gender_recognition, #smile_detection, #age_estimation and face #identification and #verification.
#face
#face