Tensorflow(@CVision)
13.9K subscribers
1.17K photos
239 videos
68 files
2.23K links
اخبار حوزه یادگیری عمیق و هوش مصنوعی
مقالات و یافته های جدید یادگیری عمیق
بینایی ماشین و پردازش تصویر

TensorFlow, Keras, Deep Learning, Computer Vision

سایت دوره
http://class.vision

👨‍💻👩‍💻پشتیبان دوره ها:
@classvision_support
Download Telegram
#آموزش #TF2
از تنسرفلو 2.2 به بعد شما می‌توانید در روش model subclassing در کلاس تعریف مدلتون متد train_step را override کنید (تصویر1) و به این ترتیب عملگر فراخوانی تابع fit را مدیریت کنید(تصویر2)!
مثال عملی این کار را در اینجا مثال شبکه‌ی GANی که François Chollet تعریف کرده ببینید.

منبع از توئیت‌های شوله
#آموزش #سورس_کد
آیا می دانید از #tf2 و #kears و می‌توانید برای آموزش تقریبی #SVM استفاده کنید؟
قبلا رایج بود که ویژگی ها را از یکی از لایه‌های یک شبکه از قبل آموزش داده استخراج می‌کردیم و مثلا با SVM طبقه بندی میکردیم...
اما الان می توانید از این ویژگی keras برای افزودن یک "لایه SVM" در بالای یک طبقه بندی کننده عمیق استفاده کرده و کل شبکه را به صورت end2end آموزش دهید!

البته خود François Chollet راه قدیمی‌ترو توصیه کرده و نوشته:

In practice, I think this is a bad idea. But it's certainly something you *can* do.
ML pro tip: learning your features is better than leveraging random kernels.

به هر حال این نوت‌بوک که توسط شوله ایجاد شده را می‌تونید در کولب اجرا کرده و روی مجموعه داده mnist تست کنید:

https://colab.research.google.com/drive/1rObQto2bWMBPy8W555IYHtZKtniRUNDQ#scrollTo=_ZPU5WGO0FzQ
#خبر #TF2

🗣TensorFlow 2.2.0-rc3 has been released!

تغییرات اساسی:

⭕️همان طور که اینجا دیدیدم، Profiler جدید به تنسربورد
⭕️تغییرات اساسی در Model.fit،در tf.keras مثلا همان طور که اینجا گفته شد، برای override کردن train_step
⭕️فرمت SavedModel اکنون از تمام لایه های داخلی Keras پشتیبانی می کند (از جمله معیارها ، لایه های پیش پردازش و لایه های stateful در RNN )
⭕️و سایر به روز رسانی‌ها که در اینجا می‌توانید ببینید:
https://github.com/tensorflow/tensorflow/releases/tag/v2.2.0-rc3?linkId=86635685
#آموزش #سورس_کد #TF2
نوت‌بوک بازنویسی شده Transfer Learning توسط François Chollet

در این نون‌بوک ریزه کاری هایی مثل پاس دادن پارامتر training=False به مدلی که قراره روش fine-tuning انجام بدیم یا ملاحظاتی مربوط به استفاده از batch norm ذکر شده است.

https://colab.research.google.com/drive/17vHSAj7no7RMdJ18MJomTf8twqw1suYC#scrollTo=gWgNGY9S8q6d

اگر هیچ آشنایی با کراس ندارید و تازه می‌خواهید شروع کنید، میتوانید از فیلم‌های آموزش مقدماتی کراس با زبان فارسی استفاده کنید:
http://class.vision/deeplearning-keras/
#آموزش #سورس_کد #TF2 #Keras

پترن لایه‌ی Endpoint در فریم ورک Keras

از این لایه برای مدیریت و تعریف loss و metric میشه استفاده کرد.


https://colab.research.google.com/drive/1zzLcJ2A2qofIvv94YJ3axRknlA6cBSIw

#loss
منبع: توئیت François Chollet
#آموزش #tf2 #keras
آموزش دیگری از chollet این بار با موضوع Deep Dream

A modern Deep Dream example in around 60 lines of Keras:

https://colab.research.google.com/drive/18XPdEDVYdr_ODAvW0DrWRCRC25tvTuCE
منبع
https://twitter.com/fchollet/status/1256744926550716417?s=20