Строковые литералы как параметры шаблона
Начиная с C ++ 20, вы можете использовать строку в качестве параметра шаблона, не являющегося типом. Идея состоит в том, чтобы использовать стандартную строку basic_fixed_string, которая имеет конструктор constexpr. Конструктор constexpr позволяет ему создать экземпляр фиксированной строки во время компиляции.
Вроде бы мелочь, а приятно — не нужно производить обходных маневров и использовать лишнюю память.
➡️ @cpp_geek
Начиная с C ++ 20, вы можете использовать строку в качестве параметра шаблона, не являющегося типом. Идея состоит в том, чтобы использовать стандартную строку basic_fixed_string, которая имеет конструктор constexpr. Конструктор constexpr позволяет ему создать экземпляр фиксированной строки во время компиляции.
Вроде бы мелочь, а приятно — не нужно производить обходных маневров и использовать лишнюю память.
➡️ @cpp_geek
malloc стал безопасен
В предыдущих версиях использование низкоуровневых функций, унаследованных из языка Си, не рекомендовалось. Проблема в том, что Си оперирует байтами, а в С++ происходит работа с объектами со своим временем жизни и областью видимости. До С++ 20 время жизни объекта начиналось после вызова оператора new. В новой версии все изменилось — принято считать, что набор низкоуровневых функций — memcpy, memmove, malloc, aligned_alloc, calloc, realloc, bit_cast, начинает время жизни объекта. Т. е. следующий код(см картинку) будет валиден.
Т. е. у нас появляется обратная совместимость с языком Си, но относительно С++ в новой трактовке.
➡️ @cpp_geek
В предыдущих версиях использование низкоуровневых функций, унаследованных из языка Си, не рекомендовалось. Проблема в том, что Си оперирует байтами, а в С++ происходит работа с объектами со своим временем жизни и областью видимости. До С++ 20 время жизни объекта начиналось после вызова оператора new. В новой версии все изменилось — принято считать, что набор низкоуровневых функций — memcpy, memmove, malloc, aligned_alloc, calloc, realloc, bit_cast, начинает время жизни объекта. Т. е. следующий код(см картинку) будет валиден.
Т. е. у нас появляется обратная совместимость с языком Си, но относительно С++ в новой трактовке.
➡️ @cpp_geek
Проверка возможности конструирования элемента с набором конкретных параметров
Когда шаблонный класс задан в виде template<class T, typename... Args>, бывает трудно понять, какие аргументы можно использовать. Метод is_constructible из библиотеки type_traits даёт неполный ответ: он показывает, существует ли конструктор под конкретные аргументы. Для более полной картины можно использовать еще один шаблон.
➡️ @cpp_geek
Когда шаблонный класс задан в виде template<class T, typename... Args>, бывает трудно понять, какие аргументы можно использовать. Метод is_constructible из библиотеки type_traits даёт неполный ответ: он показывает, существует ли конструктор под конкретные аргументы. Для более полной картины можно использовать еще один шаблон.
➡️ @cpp_geek
Избавляемся от макросов
В целом, разработчики стандарта стараются исключить препроцессор. Как следствие, в новой версии можно не пользоваться макросами FILE и LINE, а взамен использовать std::source_location(см картинку).
Как мы видим, код становится более единообразным, в одном стиле, с расширяемым функционалом.
➡️ @cpp_geek
В целом, разработчики стандарта стараются исключить препроцессор. Как следствие, в новой версии можно не пользоваться макросами FILE и LINE, а взамен использовать std::source_location(см картинку).
Как мы видим, код становится более единообразным, в одном стиле, с расширяемым функционалом.
➡️ @cpp_geek
В чем отличие vector от deque?
Ответ: Здесь вспоминают о наличии у deque методов push_front и pop_front. Но основное отличие в организации памяти, у vector она как у обычного Си-массива, т.е. последовательный и непрерывный набор байт, а у deque это фрагменты с разрывами. За счет этого отличия vector всегда можно привести к обычному массиву или скопировать целиком участок памяти, но зато у deque операции вставки/удаления в начало быстрее (O(1) против O(n)), ввиду того, что не нужно перемещать.
➡️ @cpp_geek
Ответ: Здесь вспоминают о наличии у deque методов push_front и pop_front. Но основное отличие в организации памяти, у vector она как у обычного Си-массива, т.е. последовательный и непрерывный набор байт, а у deque это фрагменты с разрывами. За счет этого отличия vector всегда можно привести к обычному массиву или скопировать целиком участок памяти, но зато у deque операции вставки/удаления в начало быстрее (O(1) против O(n)), ввиду того, что не нужно перемещать.
➡️ @cpp_geek
Для чего используется ключевое слово volatile?
Для указания компилятору, что доступ к переменной может осуществляться из мест, неподконтрольных ему. А как следствие, что работу с данной переменной не нужно подвергать разного рода оптимизациям.
Т.е. если volatile присутствует в каком-то условии, которое не меняется со временем, то компилятор может оптимизировать его, чтобы избежать ненужных проверок, при использовании volatile компилятор скорее всего не будет этого делать.
➡️ @cpp_geek
Для указания компилятору, что доступ к переменной может осуществляться из мест, неподконтрольных ему. А как следствие, что работу с данной переменной не нужно подвергать разного рода оптимизациям.
Т.е. если volatile присутствует в каком-то условии, которое не меняется со временем, то компилятор может оптимизировать его, чтобы избежать ненужных проверок, при использовании volatile компилятор скорее всего не будет этого делать.
➡️ @cpp_geek
Шаблон Voodoo
Вы можете настраивать шаблоны класса под конкретные значения или типы аргументов: так работает специализация шаблонов классов C++. Если это рекурсия, можно записывать базовые случаи, а затем определить общий шаблон как рекурсивную комбинацию этих случаев.
➡️ @cpp_geek
Вы можете настраивать шаблоны класса под конкретные значения или типы аргументов: так работает специализация шаблонов классов C++. Если это рекурсия, можно записывать базовые случаи, а затем определить общий шаблон как рекурсивную комбинацию этих случаев.
➡️ @cpp_geek
Вывод параметра шаблона класса
Довольно странное название функции, да? Её суть в том, что с C++17 компилятор может сам определять типы аргументов конструкторов стандартных классов. Раньше же это работало лишь для функций.
Для того, чтобы осознать удобство этой функции, нужно быть знакомыми с конструкторами классов в C++.
➡️ @cpp_geek
Довольно странное название функции, да? Её суть в том, что с C++17 компилятор может сам определять типы аргументов конструкторов стандартных классов. Раньше же это работало лишь для функций.
Для того, чтобы осознать удобство этой функции, нужно быть знакомыми с конструкторами классов в C++.
➡️ @cpp_geek
Программирование на С++ и URI в коде
Вы можете поместить URI в свой код на C++, и компилятор не выдаст ошибку. Любой идентификатор, за которым следует двоеточие, становится меткой goto в С++. Все, что следует за двойным слешем, воспринимается как комментарий. Именно поэтому в приведенном выше коде http – это метка, а //google.com/ – комментарий. Но компилятор может выдать предупреждение, так как заданная метка не используется.
➡️ @cpp_geek
Вы можете поместить URI в свой код на C++, и компилятор не выдаст ошибку. Любой идентификатор, за которым следует двоеточие, становится меткой goto в С++. Все, что следует за двойным слешем, воспринимается как комментарий. Именно поэтому в приведенном выше коде http – это метка, а //google.com/ – комментарий. Но компилятор может выдать предупреждение, так как заданная метка не используется.
➡️ @cpp_geek
Что такое чисто виртуальный метод и абстрактный класс?
Ответ: Чисто виртуальный метод — это метод, у которого отсутствует реализация. Абстрактный класс — это класс имеющий хотя бы один чисто виртуальный метод. Как следствие, экземпляр подобного класса не может быть создан т.к. отсутствует реализация виртуального метода.
➡️ @cpp_geek
Ответ: Чисто виртуальный метод — это метод, у которого отсутствует реализация. Абстрактный класс — это класс имеющий хотя бы один чисто виртуальный метод. Как следствие, экземпляр подобного класса не может быть создан т.к. отсутствует реализация виртуального метода.
➡️ @cpp_geek
Автовыведение типа
Несмотря на то, что ключевое слово auto было введено еще в C++11, многие программисты продолжают его игнорировать. А ведь автовыведение позволяет экономить время и делает код лаконичным.
Увидеть преимущества можно даже на примере стандартных типов STL.
➡️ @cpp_geek
Несмотря на то, что ключевое слово auto было введено еще в C++11, многие программисты продолжают его игнорировать. А ведь автовыведение позволяет экономить время и делает код лаконичным.
Увидеть преимущества можно даже на примере стандартных типов STL.
➡️ @cpp_geek
Сортировка пузырьком
Определите, сколько обменов сделает алгоритм пузырьковой сортировки по возрастанию для данного массива.
Формат входных данных:
На первой строке дано целое число n (1 ≤ n ≤ 1000) – количество элементов в массиве. На второй строке – сам массив. Гарантируется, что все элементы массива – различные целые числа, не превышающие по модулю 10^9.
Формат выходных данных:
Выведите одно число – количество обменов пузырьковой сортировки.
➡️ @cpp_geek
Определите, сколько обменов сделает алгоритм пузырьковой сортировки по возрастанию для данного массива.
Формат входных данных:
На первой строке дано целое число n (1 ≤ n ≤ 1000) – количество элементов в массиве. На второй строке – сам массив. Гарантируется, что все элементы массива – различные целые числа, не превышающие по модулю 10^9.
Формат выходных данных:
Выведите одно число – количество обменов пузырьковой сортировки.
➡️ @cpp_geek
This media is not supported in your browser
VIEW IN TELEGRAM
Дерево Фенвика
Довольно простая и быстрая, но совсем не очевидная в плане идеи и понимания структура данных. Позволяет находить сумму на префиксе и изменять отдельные элементы за O(log n). В следующем посте — реализация на C++.
➡️ @cpp_geek
Довольно простая и быстрая, но совсем не очевидная в плане идеи и понимания структура данных. Позволяет находить сумму на префиксе и изменять отдельные элементы за O(log n). В следующем посте — реализация на C++.
➡️ @cpp_geek