ميادين الاعمار
8.04K subscribers
17.1K photos
4.85K videos
8.29K files
6.03K links
منصة عربية تسعى لتجويد وتعزيز ومشاركة كل ماهو مفيد وجديد في مجالات الهندسة المدنية والمعمارية والارتقاء وتطوير مهاراتك في مجالات العمل المختلفة وتساهمُ في النهوض بالحس الهندسي للمهندس
Download Telegram
## في مجال #هندسة_الزلازل 🏗️، يستخدم العديد من المهندسين في الممارسة #ETABS أو برامج أخرى 💻 لتطبيق الأساليب المحددة في قوانين التصميم 📚، مثل نهج القوة الجانبية أو تحليل طيف الاستجابة، دون التركيز على بعض أساسيات هندسة الزلازل 🌎.
في المنشورات القادمة، سأقوم بتلخيص بعض الجوانب المهمة التي يجب أن نضعها في الاعتبار عندما يتعلق الأمر بالزلازل 💥.
في كتابهم *، وضع A. Elnashai و L. Sarno #هندسة_البناء_المقاومة_للزلازل كـ توازن بين الطلب والعرض (القدرة) ⚖️. يمثل الطلب المتطلبات المفروضة على النظام بما في ذلك خصائص الزلزال وحركة المدخل، بينما يمثل العرض القدرة المتاحة للعمليات والتشوهات (استجابة الهيكل وتقييمه بما في ذلك نمذجة الهيكل وطرق التحليل).
بدايةً من المنشور الأول مع موضوع فرعي للطلب، وهو أسباب الزلازل التي يمكن تلخيصها في 3 أسباب رئيسية:
1- 𝐓𝐡𝐞𝐨𝐫𝐲 𝐨𝐟 𝐏𝐥𝐚𝐭𝐞 𝐓𝐞𝐜𝐭𝐨𝐧𝐢𝐜𝐬: الصفائح هي ألواح صخرية كبيرة وثابتة و صلبة بسمك حوالي 100 كم تشكل القشرة أو الغلاف الصخري وجزءًا من الوشاح العلوي للأرض 🌏.
يمكن تفسير حدوث الزلازل من خلال نظرية العمليات التكتونية واسعة النطاق التي يشار إليها باسم "تكتونية الصفائح". تصنف الزلازل التكتونية الناتجة على النحو التالي:
- زلازل بين الصفائح (زلازل حدود الصفائح) التي تساهم بنسبة 95٪ من إطلاق الطاقة الزلزالية في جميع أنحاء العالم 🌎.
- زلازل داخل الصفائح (زلازل مرتبطة بحدود الصفائح، أو زلازل منتصف الصفيحة) التي قد تحدث في أي مكان تقريبًا وتتسبب في أضرار كبيرة 😥.

2- 𝐅𝐚𝐮𝐥𝐭𝐬:
الصدوع هي الكسور الناتجة في قشرة الأرض التي تحدث في آليتين: الصدوع الانزلاقية (تتحرك كتلة واحدة رأسياً إلى الأخرى) والصدوع الانزلاقية الجانبية (تتحرك الكتل المتجاورة أفقياً على طول بعضها البعض) ➡️. عندما تتحرك كتلتان أرضيتان بالنسبة لبعضهما البعض، يتم تخزين الطاقة المرنة بسبب العمليات التكتونية ثم يتم إطلاقها من خلال تمزق منطقة التلامس. تنطلق الكتل المشوهة مرة أخرى نحو التوازن وينتج عن ذلك اهتزاز الأرض بسبب الزلزال 💥.

3- 𝐒𝐞𝐢𝐬𝐦𝐢𝐜 𝐰𝐚𝐯𝐞𝐬:
يمكن أن يتم إنشاء اهتزاز الزلزال من خلال نوعين من الموجات الزلزالية المرنة: الموجات الجسمية والموجات السطحية 🌊:
- تنتقل الموجات الجسمية عبر طبقة باطن الأرض. وتشمل الموجات الطولية / الأولية (P-waves --> سعات صغيرة + فترات قصيرة) والموجات المستعرضة / الثانوية (S-waves --> سعة كبيرة + فترات طويلة) 📈.
- تنتشر الموجات السطحية عبر الطبقات الخارجية لقشرة الأرض. وتشمل موجات لوف (L-waves --> سعة كبيرة + فترات طويلة) وموجات رايلي (R-waves --> سعة كبيرة جدًا وأشكال موجة منتظمة) 🌊.

*مرجع: 𝘍𝘶𝘯𝘥𝘢𝘮𝘦𝘯𝘵𝘢𝘭𝘴 𝘰𝘧 𝘌𝘢𝘳𝘵𝘩𝘲𝘶𝘢𝘬𝘦 𝘌𝘯𝘨𝘪𝘯𝘦𝘦𝘳𝘪𝘯𝘨 𝘣𝘺 𝘈𝘮𝘳 𝘚. 𝘌𝘭𝘯𝘢𝘴𝘩𝘢𝘪 𝘢𝘯𝘥 𝘓𝘶𝘪𝘨𝘪 𝘋𝘪 𝘚𝘢𝘳𝘯𝘰

#هندسة_الزلازل #تصميم_زلزالي #زلزالي
## *أساسيات الزلازل* *(المنشور #2)* 🌎

كمواصلة للمنشور السابق المتعلق بالهندسة الإنشائية للزلازل 🏗️، هناك موضوع فرعي آخر يستحق المشاركة، ألا وهو قياس الزلازل والفرق بين شدتها ومقدارها.

بشكل عام، يتم التعبير عن حجم الزلزال بعدة طرق، أي القياس النوعي (غير الآلي) الذي يعد ضروريًا في تجميع سجلات الزلازل التاريخية لأغراض تحليل المخاطر 📊، والقياس الكمي (الآلي) الذي يمكن أن يعتمد على المعايرة الإقليمية أو العالمية المطبقة.

1- الشدة: هي مقياس تقييم الأضرار ذاتي غير آلي 🤕، أي مقياس لأضرار المباني 🏢، وآثار سطح الأرض 🏞️، وردود فعل الإنسان على هزات الزلزال 😨.

- يتم استخدام مقاييس منفصلة مختلفة لقياس شدة الزلازل حيث توفر كل درجة وصفًا نوعيًا لآثار الزلزال، مثل MCS و MM و MSK ... إلخ. (انظر الصورة أدناه).

- تُستخدم مقاييس الشدة لرسم خطوط متساوية الشدة أو خرائط توزيع الأضرار (خطوط متساوية الشدة).

- لا تأخذ مقاييس الشدة في الاعتبار الظروف المحلية للتربة 🌱 التي قد تؤثر بشكل كبير على الأضرار الناجمة عن الزلازل.

- من الضروري إيجاد علاقة بين الشدة (ملاحظات الزلازل التاريخية) وتسارع الأرض الأقصى (القوى المحددة في الكود) كما سيتم مناقشته لاحقًا في منشور قادم.

2- المقدار: هو مقياس كمي (آلي) لحجم الزلزال وأبعاد الصدع 📏، بناءً على أقصى سعات الموجات الجسمية أو السطحية. يمكن استخدام مقدار الزلزال لتحديد كمية الطاقة المنبعثة أثناء تمزق الصدع 🔥. لا تزداد مقاييس المقدار بشكل متزايد مع حجم الزلزال، وهو ما يُعرف باسم "التشبع".

تُعد مقاييس المقدار الشائعة هي التالية:

- مقدار ريشتر المحلي (ML): يقيس أقصى سعة الموجة الزلزالية A (بالملليمترات) المسجلة على مقياس الزلازل القياسي "وود-أندرسون" الواقع على مسافة 100 كم من مركز الزلزال. تسبب الزلازل التي يزيد مقدارها عن 5.5 أضرارًا كبيرة.

- مقدار موجة الجسم (mb): يقيس سعات الموجات P ذات فترات حوالي 1.0 ثانية، وهو مناسب للزلازل العميقة.

- مقدار موجة السطح (Ms): يقيس سعات الموجات LR ذات فترة 20 ثانية، وهو مناسب للزلازل الكبيرة.

- مقدار العزم (Mw): يأخذ في الاعتبار آلية القص التي تحدث في مصادر الزلزال، ولا يرتبط بأي موجة زلزالية.

بشكل عام، تكون الزلازل التي يبلغ مقدارها بين 4.5-5.5 محلية 🏡، بينما تكون الأحداث الزلزالية الكبيرة في نطاق 6.0-7.0 🏙️، والزلازل الكبرى هي تلك التي يزيد مقدارها عن 7.0 🌋.

*مرجع: أساسيات هندسة الزلازل بواسطة عمرو س. النشائي ولويجي دي سارنو

#هندسة_الزلازل #تصميم_زلزالي #etabs
## التعرية: Ravelling مشكلة خطيرة للرصف 🚧

التعرية هي مشكلة خطيرة تواجه الرصف، حيث تُشير إلى انفصال مستمر لجزيئات التجميع داخل الرصف، سواء من السطح ⬆️ أو من الحواف ➡️.

كيف تبدأ التعرية؟

عادةً ما تتآكل أجزاء التجميع الدقيقة أولاً، مما يؤدي إلى سطح مُتعرّج وخشن 😟. مع استمرار هذا التآكل، تصبح الجزيئات الأكبر حجمًا مفككة، مما يمنح الرصف مظهرًا خشنًا وغير متساوٍ 💔. في النهاية، ستتقدم عملية التفكك عبر الطبقات الأساسية 😥.

ماذا تفعل قبل إصلاح الرصف المتعرّج؟

قبل البدء بأي إصلاحات، من المهم تقييم حالة الرصف بدقة 🧐. يمكن استخدام تقنية مسح التصوير بالليزر لدينا لتقييم حالة الرصف بشكل دقيق 🔍.

كيف تعمل تقنية مسح التصوير بالليزر؟

يستخدم نظام قياس الملف الشخصي الطولي في مُحلل الطرق الآلي (ARAN) الليزر لتحديد التعرية، وتوفير بيانات ملف تعريف الطريق، وحساب مؤشرات الخشونة في الوقت الفعلي 📊. يمكن بعد ذلك استخدام بيانات حالة الرصف هذه لإجراء الإصلاحات اللازمة للأضرار التي تم تحديدها 🔧.

للمزيد من المعلومات عن التعرية وكيفية تحديدها، اقرأ مدونتنا الأخيرة: "التعرية: الأسباب والعواقب والعلاجات": #إدارة_الأصول #بناء #هندسة_مدنية #خدمات_إدارة_الرصف
#صيانة_الطرق
#هندسة_الطرق
https://t.me/construction2018/52868
This media is not supported in your browser
VIEW IN TELEGRAM
## استكشاف طريق ياكسي: معجزة هندسية حديثة!! 🗺️🚗

هل سبق لك أن سمعت عن "طريق السماء على شكل سلم" 🪜 في مقاطعة سيتشوان جنوب غرب الصين؟ 🇨🇳 طريق ياكسي، الذي يمتد لمسافة 240 كيلومترًا بين يان وشي تشانغ، هو إنجاز مذهل للبنية التحتية. 🏗️ هذا الطريق الاستثنائي هو مزيج سلس من الجسور العلوية والأنفاق، حيث تغطي 25 نفقًا ما مجموعه حوالي 41 كيلومترًا. 🛣️ إنه ليس مجرد طريق سريع؛ إنه تجربة للطبيعة والهندسة تعملان في تناغم. 🏞️

#بنية_تحتية #هندسة #سيتشوان #طريق_ياكسي #سفر #رحلة_بالسيارة
## 👷🏽‍♂️ *ما هو بسكوت الخرسانة؟* 👷🏽‍♀️

بسكوت الخرسانة هي كتل خرسانية صغيرة 🧱 مصممة لدعم شبكات التسليح الثقيلة 💪 ، والحديد 🏗️، والخرسانة 🏗️. تلعب البسكوت دورًا أساسيًا في تثبيت التعزيزات الفولاذية في البلاطات 🏢 قبل المساعدة على منع الحركة أثناء صب الخرسانة 🏗️. تأتي البسكوت بأحجام وأشكال ومواد مختلفة 📐. ولكن يجب أن تكون قوة بسكوت الخرسانة دائمًا مكافئة لقوة الخرسانة المجاورة لها مع نفس خصائص التمدد 📏. ستدعم بسكوت الخرسانة التعزيزات الخاصة بك وتنفصل عن القوالب لضمان تثبيت الحديد بشكل صحيح وعدم تحركه أثناء صب الخرسانة كما هو موضح في الصورة أعلاه 🚧. اعتمادًا على مكان وجودك في العالم 🌎، ستحدد اللوائح المعايير اللازمة لسمك غطاء الخرسانة الذي يجب أن يلتزم به بسكوتك 📏. يجب دمج أي حديد أو شبكة تسليح للخرسانة الخاصة بك إلى العمق الصحيح كما هو محدد بواسطة معايير الصناعة 📏. بشكل أساسي، تتمثل مهمة بسكوت الخرسانة في ضمان تحقيق غطاء الخرسانة للتعزيزات في البناء أو الهيكل الخاص بك 🏗️. تُستخدم بسكوت الخرسانة بشكل شائع لبناء جدران الخرسانة 🧱، والأساسات 🏗️، والبلاطات 🏢، والأعمدة 🏗️.

## 💪 فوائد قوة بسكوت الخرسانة 💪

أصبحت بسكوت الخرسانة هي الخيار الأمثل بسبب قوتها لتحمل وزن الفولاذ التعزيزي الثقيل 💪 والخرسانة 🏗️. لذلك، يمكن أن تحمل كتل بسكوت الخرسانة أوزانًا لا تصدق 💪 دون أن تُسحق أو تُزاح 🏗️.

## 📏 الدقة 📏

غالبًا ما تُستخدم بسكوت الخرسانة في مشاريع البناء الكبيرة 🏗️، ويجب عليها إدارة الحديد الثقيل ذو القطر السميك 🏗️. يجب أن تحافظ على الارتفاع الصحيح بين سطح الأرض والتعزيزات، على الرغم من الوزن الهائل وشدة سلامة الهيكل 🏗️.👷🏽♂️

#بناء #مهندس_بناء #مهندس_هيكلي
#هندسة_مدنية
#هندسة_إنشائية
https://t.me/construction2018
## تكثيف التربة باستخدام ضغط الاهتزاز (الفيبروفلوت): تحسين الاستقرار والقوة لمشاريع البناء. 🏗️💪

شرح تقنية ضغط الاهتزاز (الفيبروفلوت):

تُعد تقنية ضغط الاهتزاز (الفيبروفلوت) أو الاهتزاز الأرضي تقنية لتحسين التربة، تُستخدم لتكثيف التربة الحبيبية باستخدام مجس يهتز. 🧐 تتضمن العملية إدخال الفيبروفلوت في الأرض، غالبًا مع استخدام نفاثات الماء لتسهيل الاختراق. 💧 بمجرد الوصول إلى العمق المطلوب، يهتز المجس، مما يؤدي إلى إعادة ترتيب جزيئات التربة إلى تكوين أكثر كثافة. 🔄 ثم يتم سحب الفيبروفلوت تدريجياً، مع الحفاظ على الاهتزازات لضمان تكثيف متسق. 🔁 يمكن إضافة مادة حبيبية لملء الفراغات التي تم إنشاؤها.

فوائد تقنية ضغط الاهتزاز (الفيبروفلوت):

* تُحسّن هذه التقنية قدرة تحمل التربة. 👍
* تُقلل من الاستقرار. 📉
* تُخفف مخاطر السيولة. 🌊

أهمية تقنية ضغط الاهتزاز (الفيبروفلوت):

تُعد تقنية ضغط الاهتزاز (الفيبروفلوت) تقنية قيّمة لمشاريع البناء على التربة الرخوة والحبيبية. 👷‍♂️

حقوق الفيديو: مجموعة ديسيكو

#فيبروفلوت #تحسين_التربة #جيوتقنية #هندسة #بناء #هندسة_مدنية #بناء_مدني #هندسة #هندسة_مدنية
https://t.me/construction2018/52909
This media is not supported in your browser
VIEW IN TELEGRAM
## 🚀 الشوتكريت: 🏗️ الخرسانة عالية السرعة لسطح قوي ودائم 💪

الشوتكريت هو نوع من الخرسانة 👷‍♀️ أو المونة 🧱 التي يتم رشها على الأسطح بسرعة عالية 💨 من خلال خرطوم. يستخدم عادةً لإصلاحات البنية 🛠️، وتثبيت المنحدرات ⛰️، والحفر 🕳️، وبناء أشكال معقدة مثل الجدران المنحنية 📐.

يمكن تطبيق الشوتكريت بطريقتين:

* الخليط الرطب: 💧 يتم خلط جميع المكونات، بما في ذلك الماء، قبل الرش.
* الخليط الجاف:
💧 يتم إضافة الماء عند الفوهة أثناء الرش.

تسمح هذه التقنية بالالتصاق والضغط الممتازين، مما يجعل الشوتكريت مثاليًا لكل من مشاريع البناء الجديدة 🏗️ وإصلاحات البناء 🛠️، مما يوفر سطحًا متينًا وقويًا 💪.

#شوتكريت #حماية_المنحدرات #هندسة #هندسة_مدنية #بناء #بناء_مدني
##  تحقق الزلازل من خلال مقارنة الرياح: هل يكفي؟ 🌪️🏢

هل يمكن تحقيق التحقق من التصميم الزلزالي بمقارنة القوى الزلزالية الجانبية مع قوى الرياح؟ 🤔

في ظل ظروف معينة، يمكن التحقق من السلامة الزلزالية من خلال مقارنة حمل الرياح:

حمل الرياح ≥ حمل الزلزال؟ 🌬️💥

وفقًا للكود الزلزالي الأوروبي، Eurocode 8، لم يعد التحقق التفصيلي من الزلازل ضروريًا إذا تم استيفاء الشرط أعلاه. 🇪🇺

تُعتبر مقاومة الهيكل الجانبية للرياح كافية لحمل الزلازل أيضًا. 💪

ومع ذلك، ينطبق هذا فقط على إطار الهيكل العام. 🏗️

لا تزال المكونات غير الهيكلية داخل المبنى بحاجة إلى التحقق من الزلازل، حيث لا تتأثر بأحمال الرياح الخارجية. 🚧

تعمل قوى الزلزال بدلاً من ذلك كقوى قصور ذاتي داخل الهيكل. 🔄

ماذا عن كود التصميم الزلزالي الخاص بك - هل يُسمح بمقارنة "الرياح مقابل الزلازل"؟

---

#هندسة_هيكلية #هندسة_الزلازل #زلزالي #تصميم_هيكلي #تصميم_زلزالي

مُقارنة الرياح مقابل الزلازل: رسم توضيحي
https://t.me/construction2018/52917
## 🏗️ الخرسانة: أساس متين لبنيتنا التحتية 💪

الخرسانة، تلك المادة الشائعة في البناء، هي العمود الفقري لبنيتنا التحتية. قوتها ومتانتها 🧱 هي أساس كل مشروع ناجح، 🏗️ وتعتمد ضمان هاتين الصفات على مجموعة من الاختبارات، أهمها اختبار السلامب. 🧪

اختبار السلامب 📏 هو طريقة بسيطة وفعالة لتقييم قابلية الخرسانة الطازجة للعمل. 🏗️ تشير قابلية العمل إلى سهولة خلط الخرسانة ونقلها ووضعها وتثبيتها. 🚛 بعبارة أخرى، يخبرنا هذا الاختبار عن مدى سهولة تدفق الخرسانة وملء المساحة المقصودة. 💧

لماذا يعد اختبار السلامب مهمًا؟

* قابلية العمل: يجب أن يكون خليط الخرسانة متوازنًا بشكل صحيح بين قابلية العمل والقوة. ⚖️ يساعد اختبار السلامب على ضمان أن الخرسانة ليست صلبة جدًا أو سائلة جدًا، مما يسهل وضعها وتحقيق التثبيت المناسب. 🏗️
* التجانس: يسمح اختبار السلامب بإجراء فحوصات سريعة لتناسق الخرسانة في جميع أنحاء الدفعة. 🧪 يساعد هذا في تحديد أي اختلافات محتملة قد تؤثر على القوة النهائية أو التشطيب النهائي للخرسانة. 📏
* مراقبة الجودة: من خلال تحديد قيمة سلامب مستهدفة بناءً على مواصفات المشروع، يوفر الاختبار معيارًا لضمان أن الخرسانة تلبي معايير قابلية العمل المطلوبة. 💯

كيف يتم إجراء اختبار السلامب؟

1. يتم ملء قالب على شكل مخروط بالخرسانة الطازجة على ثلاث طبقات، يتم دق كل طبقة 25 مرة. 🔨
2. يتم رفع القالب بعد ذلك عموديًا بسرعة ثابتة. ⬆️
3. يتم قياس السلامب كفرق بين الارتفاع الأصلي للقالب والارتفاع المستقر للخرسانة بعد سحب القالب. 📏

تفسير قيمة السلامب

تعتمد قيمة السلامب المثالية على العديد من العوامل، بما في ذلك نوع الخرسانة وطريقة وضعها والتسليح. 🏗️ بشكل عام، يشير سلامب أقل إلى خرسانة أكثر صلابة، مناسبة للتطبيقات الرأسية مثل الأعمدة. ⬆️ على العكس من ذلك، يشير سلامب أعلى إلى مزيج أكثر سلاسة، مثالي للوضعيات الأفقية مثل اللوح. ➡️

الخلاصة

يعد اختبار السلامب أداة حيوية لضمان أن الخرسانة تلبي متطلبات قابلية العمل لتطبيق معين. 🧪 من خلال دمج هذا الاختبار في إجراءات مراقبة الجودة الخاصة بك، يمكنك التأكد من أن مشاريع الخرسانة الخاصة بك مبنية على أساس متين. 💯

#الخرسانة #البناء #مراقبة_الجودة #سلامب #قابلية_العمل #قوة #متانة #البنية_التحتية #هندسة_مدنية #هندسة
https://t.me/construction2018/52933
#الميزانين على مستويين. مع تقديم الميزانين على مستويين، يمكن للمستخدم الآن الاستمتاع بـ:

* استخدام الفضاء الأمثل:  زيادة سعة التخزين الخاصة بك باستخدام الفضاء الرأسي بكفاءة.
* إدارة المخزون الفعالة:  تبسيط عمليات المخزون مع نظرة عامة واضحة على المستويات المختلفة.
* معايير السلامة المحسنة:  الحفاظ على معايير السلامة العالية مع مستويات الميزانين المنظمة جيدًا المصممة للاستقرار والأمان.
* التوسع الاقتصادي:  توسيع عملياتك دون الحاجة إلى مساحة أرضية إضافية، مما يوفر التكاليف والموارد.
* التكامل السلس:  دمج مستويات الميزانين في سير العمل الحالي دون عناء، مما يضمن سلاسة العمليات.
#انشاءات_معدنية
#هندسة_مدنية
#هندسة_إنشائية
كيف يحدث فشل المفاصل المربوطة؟

لتصميم المفاصل المربوطة بشكل مرضٍ، من الضروري فهم هذه الاحتمالات:

أ) احتمال فشل المفصل المتداخل عن طريق القص في المساحة بين العضوين (قص مفرد):![قص مفرد]


ب) احتمال فشل أحد الصفائح بشدٍّ عبر ثقب البراغي: ![فشل الصفيحة]

ج) احتمال فشل البراغي أو الصفائح بسبب تحمل الضغط بينهما: [فشل الضغط]

د) احتمال الفشل بسبب قصّ جزء من العضو.![قص العضو]

هـ) احتمال فشل القص في البراغي على طول مستويين (قصّ مزدوج):![قص مزدوج]

تذكر أن المعرفة تنمو عند مشاركتها
دعونا نرتقي بمهنة الهندسة المدنية معا .
#هندسة_مدنية
#هندسة_إنشائية
#إنشاءات_معدنية
#أعضاء_الشد
## أساسيات الزلازل* (المشاركة رقم 29)

استمرارًا للمشاركات السابقة المتعلقة بالهندسة الإنشائية #للزلزال، تمت مناقشة #الانتظام أدناه (#الموضوع الفرعي للتوريد).

من المرجح أن تظهر الهياكل العادية توزيعًا موحدًا للطاقة، وبالتالي توزيعًا موحدًا للأضرار في ظل أعمال الزلازل. # وبالتالي فإن الانتظام ضروري ولكنه غير كاف، على سبيل المثال، التفاصيل لا تقل أهمية عن الانتظام.  بشكل عام، قد تحتوي الهياكل على مخالفات في التخطيط والارتفاع. وترتبط الأخيرة عادة بالخصائص الهندسية، مثل الحجم والشكل.

انتظام المخطط:

* أ- الهياكل ذات تكوينات المخطط المنتظم مثل المربع ⬛️ والمستطيل ⬜️ والدائري ⭕️ تكون مدمجة وتعتبر منتظمة حتى مع زوايا إعادة الدخول الصغيرة.
* ب- زوايا إعادة الدخول الكبيرة التي تخلق أشكالًا صليبية مثل الأشكال L، وU، وI، وT، وH، تعتبر غير منتظمة، لأن الإزاحات النسبية عند تقاطع الكتل المختلفة تسبب أضرارًا جسيمة وتأثيرات الالتواء من المحتمل أن تحدث. ومع ذلك، تعتمد مخالفات الخطة على حجم النكسات، ويتم تحديد حدودها في رموز التصميم.
* ج- تعتبر المباني ذات التوزيع غير المتماثل للعناصر المقاومة للكتلة أو الزلازل أو المباني ذات انقطاع المخطط لأنظمة المقاومة الجانبية غير منتظمة حتى لو كانت هندستها متماثلة ومتماسكة.
* د- المواقع اللامركزية للنوى الصلبة للسلالم الخارجية تولد أيضًا تأثيرات إلتواءية غير مرغوب فيها وبالتالي عدم انتظام.
* هـ- الأغشية: قد تؤدي الاختلافات الكبيرة في الصلابة بين أجزاء الأغشية إلى تغيير في توزيع القوى الزلزالية على المكونات الرأسية وتكوين قوى الالتوائية.  
* و- يعد عدم الاستمرارية في أنظمة المقاومة الجانبية الأفقية والرأسية مصدرًا إضافيًا لعدم انتظام المخطط. كقاعدة عامة، يمكن أن تؤدي الاختلافات التي تزيد عن 20 إلى 25% في الكتلة أو الصلابة والقوة بين الطوابق المتتالية إلى حدوث أوضاع فشل غير مواتية.

انتظام الارتفاع:

* أ- الاستمرارية العمودية لأنظمة مقاومة الزلازل ضرورية لانتظام الارتفاع. يجب أن تعمل هياكل المقاومة الجانبية (بشكل مثالي) دون انقطاع من أساساتها إلى أعلى المبنى.  
* ب- يجب تجنب الكمرات أو الأعمدة المدعمة على كمرات حيث أن الطلب المحلي المفروض وخاصة في الالتواء والقص يصعب استيعابه.
* ج- يحدث #الطابق_اللين في المباني عندما تكون صلابة الطابق لمقاومة المتطلبات الجانبية أقل بكثير من صلابة الطوابق المجاورة.  
* د- يحدث #الطابق_الضعيف إذا كان هناك طابقان متجاوران أو أكثر يظهر عليهما اختلافات كبيرة في القوة. عادةً ما تقع الطوابق الناعمة والضعيفة في الطابق الأرضي بسبب نوافذ المتاجر الكبيرة أو المرائب، على سبيل المثال.
* ه- قد تؤدي الدعامات بسبب الإطارات المملوءة جزئيًا والميزانين ومواقع التلال إلى تأثيرات أعمدة قصيرة، وهي غير مواتية للغاية

المراجع: 

* أساسيات هندسة الزلازل بقلم عمرو س. النشاي ولويجي دي سارنو
#هندسة_الزلازل
#الهندسة_المدنية
#الهندسة_الإنشائية

https://t.me/construction2018/52977?single
## 🏢 البناء الحجري في التصميم الزلزالي 🏢
يقصد بالبناء الحجري:البناء بالطوب او الطابوق او البناء بالاحجار..
استُخدم البناء الحجري في البناء لعدة قرون بسبب متانته، جماله، وخصائصه الحرارية. ومع ذلك، فإن أدائه في الأحداث الزلزالية يتطلب اهتمامًا خاصًا لضمان السلامة والمرونة. فيما يلي نظرة عامة موجزة على الجوانب الرئيسية للبناء الحجري في التصميم الزلزالي:

🔍  النواحي الرئيسية:

1.  خصائص المواد:

    - القوة والصلابة:  البناء الحجري قوي تحت الضغط ولكنه ضعيف تحت الشد والقص. هذه الهشاشة المتأصلة يمكن أن تكون تحديًا أثناء الزلازل التي تسبب قوى جانبية.
    - الليونة:  تحسين ليونة هياكل البناء الحجري أمر ضروري لمنع الانهيار المفاجئ. يتم تحقيق ذلك عادةً من خلال تقنيات التعزيز والتحديث.

2.  البناء الحجري المعزز:

    - التسليح الرأسي والأفقي:  يؤدي دمج التعزيزات الفولاذية داخل جدران البناء الحجري إلى زيادة قدرتها على تحمل القوى الجانبية.  تقاوم القضبان الرأسية الانقلاب، بينما تساعد القضبان الأفقية على توزيع الأحمال.
    - اللب المملوء بالطين:  يؤدي ملء الفراغات في وحدات البناء الحجري بالطين إلى تحسين الارتباط بين البناء الحجري والتعزيز، مما يزيد من القوة والاستقرار الإجمالي.

3.  تكوين الجدار:

    - جدران القص:  تُعد جدران القص الموضوعة بشكل استراتيجي مهمة في مقاومة الأحمال الزلزالية.  يجب أن تكون هذه الجدران موزعة جيدًا في جميع أنحاء المبنى لتجنب النقاط الضعيفة.
    - الفتحات:  يعد وضع وتحديد حجم الفتحات (النوافذ والأبواب) أمرًا بالغ الأهمية.  يمكن أن تؤدي الفتحات الكبيرة أو غير المناسبة إلى إضعاف قدرة الجدار على مقاومة القوى الجانبية.

4.  الوصلات والتفاصيل:

    - التثبيت:  تُعد الوصلات القوية بين الجدران والأرضيات والسقوف ضرورية لضمان تحرك الهيكل بأكمله كوحدة واحدة أثناء الزلزال.
    - مفاصل التحكم:  تُساعد مفاصل التحكم المصممة بشكل صحيح على استيعاب الحركات ومنع تشقق جدران البناء الحجري.

5.  التحديث:

    - تعزيز الهياكل القائمة:  يشمل التحديث إضافة تعزيزات أو استخدام مواد متقدمة مثل بوليمرات الألياف المقواة (FRPs) لتحسين الأداء الزلزالي للمباني الحجرية القائمة.

💡  المُلخص:

بينما يمثل البناء الحجري تحديات في التصميم الزلزالي بسبب طبيعته الهشة، فإن التقنيات الحديثة مثل التعزيز، تكوين الجدار الاستراتيجي، التفاصيل المناسبة، والتحديث تُحسّن بشكل كبير من مرونته.  من خلال دمج هذه الأساليب، يمكن لهياكل البناء الحجري تحقيق توازن بين الجمالية التقليدية والسلامة الزلزالية الحديثة.

#هندسة_المنشآت #هندسة_الزلازل #زلزالي #تصميم_هيكلي #تصميم_زلزالي
https://t.me/construction2018/53006