ميادين الاعمار
8.55K subscribers
17.4K photos
5.06K videos
8.31K files
6.54K links
منصة عربية تسعى لتجويد وتعزيز ومشاركة كل ماهو مفيد وجديد في مجالات الهندسة المدنية والمعمارية والارتقاء وتطوير مهاراتك في مجالات العمل المختلفة وتساهمُ في النهوض بالحس الهندسي للمهندس
Download Telegram
نظام عزل الزلازل باستخدام المثبط اللزج السائل (FVD): تعزيز مرونة الهياكل

يُصمم نظام عزل الزلازل باستخدام المثبط اللزج السائل (FVD) لحماية المباني والمنشآت أثناء الزلازل عن طريق تبديد طاقة الزلزال. تستخدم أجهزة FVD سائلاً، عادة ما يكون السيليكون، داخل أسطوانة لتحويل حركة النشاط الزلزالي إلى حرارة، مما يقلل من القوى المنقولة إلى الهيكل. يعمل هذا النظام بالتزامن مع أجهزة عزل أخرى، مثل المحامل، لتقليل حركة المبنى ومنع حدوث أضرار. تعتبر أجهزة FVD فعالة للغاية في التحكم في الاهتزازات، مما يحسن السلامة الهيكلية وراحة شاغلي المبنى على حد سواء. تُستخدم أنظمة FVD على نطاق واسع في الجسور والمباني الشاهقة والبنى التحتية الحيوية، حيث توفر طريقة موثوقة لتعزيز مرونة الزلازل.



#عزل_الزلازل #FVD #بناء #هندسة_مدنية #إنشاءات_مدنية #هندسة #هندسة_مدنية #مهندس #مهندس_مدني #مهندس #مهندس_مدني #زلزال
https://t.me/construction2018/54053
فوائد طلاء البيتومين لحماية الأساسات في مواقع البناء

🛡️ الماء:
يوفر طلاء البيتومين حاجزًا مقاومًا للماء بشكل فعال، مما يمنع تسرب المياه إلى الأساسات ويمنع الأضرار طويلة المدى.

🔨 المتانة:
البيتومين مادة متينة توفر متانة محسنة، مما يضمن حماية الأساسات من تقلبات الطقس والرطوبة والعوامل الخارجية.

💧 مقاومة الرطوبة:
باستخدام طلاء البيتومين، يصبح الأساس مقاومًا للرطوبة، مما يساعد على منع نمو العفن والفطريات في الأقبية والمساحات تحت الأرض الأخرى.

فعالية التكلفة:
يُعد طلاء البيتومين حلاً فعالاً من حيث التكلفة، حيث يطيل عمر الأساسات، ويقلل من تكاليف الصيانة والإصلاح على المدى الطويل.

🌡️ الحماية الحرارية:
يعمل كطبقة عازلة، ويوفر درجة معينة من الحماية الحرارية ويقلل من تقلبات درجات الحرارة التي قد تؤثر على الأساسات.

🏗️ منع التشقق:
تضمن مرونة البيتومين عدم حدوث تشققات نتيجة الحركات الطفيفة في الأساسات، مما يحافظ على سلامة الهيكل.

🔧 سهولة التطبيق:
تتميز طلاءات البيتومين بسهولة تطبيقها ويمكن استخدامها على أنواع مختلفة من الأساسات، مما يجعلها حلاً متعدد الاستخدامات وعمليًا لمواقع البناء.

#هندسة_إنشائية #طلاء_البيتومين #حماية_الأساسات #مواقع_البناء #عزل_الماء #مواد_البناء #سلامة_الهيكل #هندسة_مدنية #صناعة_البناء
https://t.me/construction2018/54071
نهاية البساطة: عصر جديد من التصميم الغني 🎨

لسنوات طويلة، سيطرت فلسفة "البساطة" على عالم التصميم. لكن في الواقع، أصبحت البساطة مجرد صيحة عابرة.

حان الوقت للانتقال إلى شيء أعمق وأغنى.

مستقبل التصميم الغني بالتفاصيل:
- لم تعد الأسطح البيضاء والخطوط النظيفة كافية
- يتوق الناس إلى مساحات نابضة بالحياة
- تفاصيل متنوعة تروي قصة فريدة
- مزيج من المواد الطبيعية والحديثة

🎯 التنوع مفتاح الإبداع:
- دمج الخامات والملمس لتجربة بصرية غنية
- مزج الخشب والحجر والخرسانة
- تصاميم تعكس الطاقة والحيوية

🌿 التصميم الحيوي باقٍ:
- الارتباط بالطبيعة حاجة أساسية
- نوافذ كبيرة وأفنية داخلية
- مواد طبيعية في صميم التصميم العصري

المستقبل يتجه نحو تصميم غني:
- يمزج المواد المختلفة
- يروي قصصاً ملهمة
- يربطنا بالطبيعة
- يعكس شخصيتنا وتاريخنا

ما رأيك؟ هل أنت مستعد لتوديع البساطة واحتضان تصميم أكثر ثراءً وعمقاً؟ شاركنا أفكارك! 💭

#تصميم #عمارة #ديكور_داخلي #طبيعة #إلهام #هندسة_معمارية #تصميم_عصري
https://t.me/construction2018
أنظمة الحماية الزلزالية (اليابان) المستخدمة في المباني الشاهقة لمقاومة الزلازل

لتأمين مبانيها الشاهقة من الزلازل، تعتمد اليابان على دمج كل من الهندسة المتقدمة والأساليب التقليدية:

1. عزل القاعدة الزلزالية (المخمدات الزلزالية):
تتضمن هذه التقنية وضع عوازل (مثل المحامل المطاطية) بين المبنى و أساسه. تمتص هذه العوازل وتبدد الطاقة الزلزالية، مما يمنع المبنى من الاهتزاز مباشرة مع الأرض. وهي شائعة في اليابان للبنية التحتية الحيوية والمباني الشاهقة.

2. المخمدات:
هذه الأجهزة تقلل من الاهتزازات داخل هيكل المبنى. تستخدم اليابان أنواعًا مختلفة من المخمدات، بما في ذلك المخمدات الهيدروليكية، والمخمدات الاحتكاكية، ومخمدات الكتلة المُضبوطة. تتأرجح مخمدات الكتلة المُضبوطة (البندولات أو الأوزان الكبيرة) عكس حركات المبنى، مما يقلل من الاهتزازات ويعزز الاستقرار.

3. تقوية الهيكل:
تصمم المباني بأطر مرنة، غالبًا ما تكون مصنوعة من الصلب، لتحمل القوى الزلزالية. تسمح المرونة للمبنى بالتأرجح دون أن ينهار تحت الاهتزاز الشديد، مما يوزع الطاقة الزلزالية في جميع أنحاء الهيكل.

4. الدعامات المتقاطعة والجدران القصية:
غالبًا ما تحتوي المباني الشاهقة على دعامات متقاطعة (دعامات قطرية بين الطوابق) وجدران قصية لمقاومة القوى الجانبية الناتجة عن الزلازل، مما يضيف صلابة وقدرة تحمل للهيكل.

5. أنظمة التحكم في الاهتزازات:
تشمل هذه الأنظمة استخدام تقنيات متقدمة، مثل المخمدات الزيتية أو المواد الذكية، لضبط صلابة ومرونة المبنى في الوقت الفعلي، حسب النشاط الزلزالي المُكتشف.

هذه التدابير تضمن بقاء ناطحات السحاب في اليابان مستقرة وفعالة أثناء الزلازل، مما يقلل من الأضرار ويعزز السلامة.

📌 المعرفة غير المُشارَكة هي معرفة ضائعة!! 🚀

#الحماية_الزلزالية #هندسة_الزلازل #عزل_القاعدة #المخمدات_الزلزالية #السلامة_من_الزلازل #الهندسة_الإنشائية #سلامة_المباني_الشاهقة #البناء_الياباني #التحكم_في_الاهتزازات #التقنية_الزلزالية #مرونة_الكوارث #الاستعداد_للزلازل #ابتكار_البناء #مخمدات_الكتلة_المضبوطة #التصميم_الزلزالي #المعرفة #البناء #الهندسة_المدنية

https://t.me/construction2018/54077
أعد كتابة المقال التالي بطريقة أخرى:

الكودات الزلزالية العالمية: تفاصيل مختلفة، هدف واحد!

لماذا تبدو الكودات الزلزالية حول العالم مختلفةً في تفاصيلها، ومع ذلك تبدو متشابهةً في فلسفتها الأساسية؟

على الرغم من تنوع قوانين البناء الموجودة - من يوروكود 8 في أوروبا إلى ASCE 7 في الولايات المتحدة و NZS 1170 في نيوزيلندا - إلا أنها جميعها تتشارك في خيط مشترك: هدف حماية الأرواح أثناء الزلازل.

تكمن الاختلافات غالبًا في التفاصيل، مثل متطلبات المواد المحددة أو تقنيات التحليل، والتي تتشكل وفقًا للنشاط الزلزالي المحلي، وممارسات البناء، والدروس المستفادة من التاريخ.

لكن الفلسفة الأوسع؟ هذه عالمية.

تهدف معظم الكودات إلى ضمان أن الهياكل:

* تستطيع مقاومة الزلازل الطفيفة دون أضرار.
* تتحمل الزلازل المتوسطة دون أضرار جسيمة.
* تتجنب الانهيار في الزلازل الشديدة.

ينبع هذا الأساس المشترك من عقود من البحث، والدروس المستفادة من الزلازل السابقة، وفهم عميق للديناميكيات الهيكلية وتبديد الطاقة.

لهذا السبب، على الرغم من اختلاف التفاصيل، يتحدث المهندسون في جميع أنحاء العالم لغةً متشابهةً عندما يتعلق الأمر بالمرونة الزلزالية.

هل لاحظت هذه أوجه التشابه والاختلاف عند العمل عبر كودات مختلفة؟ كيف تعتقد أن السياق المحلي يُشكل هذه المعايير؟

#التصميم_الزلزالي #هندسة_الزلازل #قوانين_البناء #الهندسة_الهيكلية
https://t.me/construction2018/54104
تحسين استقرار التربة باستخدام الدمك الديناميكي

⚙️ ما هو الدمك الديناميكي؟
تقنية لتحسين التربة تتضمن إسقاط أوزان ثقيلة بشكل متكرر على السطح لدمك وتكثيف التربة الرخوة أو الضعيفة.

🏗️ الفوائد الرئيسية للدمك الديناميكي:
زيادة قدرة تحمل التربة.
تقليل مخاطر الهبوط تحت الأحمال الإنشائية.
يساعد في استقرار المساحات الكبيرة لمشاريع البناء.

🌍 التطبيقات:
يستخدم في المناطق ذات التربة الرخوة أو القابلة للانهيار.
مثالي لتجهيز المواقع للمباني الصناعية والطرق السريعة ومدارج المطارات.

📏 كيف يعمل:
يتم إسقاط وزن ثقيل (عادةً 10-40 طن) من ارتفاع 10-30 متر على الأرض.
تتكرر العملية في نمط شبكي لضمان دمك متجانس للتربة.

🔧 متى يستخدم:
فعال بشكل خاص للتربة الحبيبية والرمال الطميية أو مواد الردم.
يستخدم غالباً في المناطق التي تكون فيها طرق دمك التربة التقليدية غير كافية.

#الدمك_الديناميكي #تحسين_التربة #تقنيات_البناء #هندسة_الأرض #الهندسة_المدنية #الهندسة_الإنشائية
https://t.me/construction2018/54111
بدايةً، كانت رحلتي مع برنامج
Tekla Structural Designer أشبه بمغامرة شيقة!! 🤩 كنتُ مبتدئًا تمامًا، ولم أتخيل قطّ أنني سأصل إلى هذا المستوى من الإتقان. كل تصميم، مهما كان بسيطًا، كان بمثابة درس قيّم لي. 📚 كل مشروع جديد كان فرصة ذهبية للنمو والتطور. 🚀

إذا كنتَ في بداية رحلتك مع
Tekla،
أو حتى تفكر في تعلم هذا البرنامج الرائع، فدعني أقول لك: يمكنك تحقيق أكثر مما تتخيل!!💪 ستتجاوز المراحل الأساسية للنمذجة، وستغوص في عالم التصميم المتقدم، وتكتشف تقنيات فعّالة تزيد من كفاءتك، وستطور مهارات عملية تجعلك مهندسًا ماهرًا وواثقًا من نفسه. 💯

لا تتردد، ابدأ رحلتك الآن!! ستكتشف إمكانياتك الهائلة، وستُدهشك النتائج. دعونا نبني معا مستقبلًا أقوى وأكثر ذكاءً!!🧠

#TeklaStructuralDesigner

#هندسة #تصميم #بناء #مهندسون #نجاح #تعلم #تطوير
ترميم الزلازل: إعطاء حياة جديدة للهياكل القائمة
التعديل التحديثي
ماذا تفعل عندما لم يتم تصميم مبنى في الأصل لتحمل قوى الزلازل التي نعرف الآن أنه يجب أن يتحملها؟ هنا يأتي دور ترميم الزلازل - وهو جزء حيوي من جعل مدننا أكثر أمانًا وقدرة على الصمود.

يتضمن ترميم الزلازل ترقية المباني القائمة لتحسين قدرتها على مقاومة الزلازل. إنها عملية صعبة، غالبًا ما تتطلب حلولًا هندسية مبتكرة للعمل مع ما هو موجود بالفعل. تتضمن بعض تقنيات الترميم الشائعة:

- إضافة جدران القص لتعزيز الصلابة والقوة الجانبية.
- تركيب الضاغطات لامتصاص طاقة الزلزال وتقليل الاهتزازات.
- استخدام التغليف بألياف الكربون لتعزيز الأعمدة، مما يجعلها أكثر ليونة.

يعتبر الترميم أمرًا بالغ الأهمية للمباني القديمة، خاصة تلك التي تم بناؤها قبل وضع قوانين الزلازل الحديثة. من خلال ترقية هذه الهياكل، يمكننا تقليل مخاطر التلف أو الانهيار بشكل كبير أثناء الزلزال.

لا تحمي هذه العملية الأرواح فحسب، بل تحافظ أيضًا على تراثنا الثقافي وتقلل من الخسائر الاقتصادية. غالبًا ما يكون الترميم أكثر فعالية من حيث التكلفة واستدامة من الهدم وإعادة البناء، مما يجعله خيارًا جذابًا للعديد من المدن.

هل شاركت في مشروع ترميم؟ ما هي التحديات التي واجهتها عند ترقية هيكل موجود لتحقيق المرونة الزلزالية؟

#ترميم_الزلازل #هندسة_الزلازل #مرونة_الهياكل #سلامة_المباني #الابتكار_الهندسي
https://t.me/construction2018/54160
هل استمرار كانات الأعمدة داخل القواعد ضرورة إنشائية ؟

الجواب هو نعم
الفيديو بوضح الفرق بين الهيكل اللي بيستخدم كانات مستمرة والهيكل اللي ما بيستخدمها.
⬅️ على اليسار، العمود بدون كانات مستمرة داخل القاعدة مثل الكرسي اللي قاعدته مكسورة وغير مستقرة، مما يجعله معرض للانهيار تحت أي ضغط.
➡️ بينما على اليمين، العمود مع كانات مستمرة داخل القاعدة، مثل الكرسي السليم والمتين اللي بيقدر يتحمل الوزن بشكل آمن.

كانات الأعمدة بتوفر الترابط القوي بين الأعمدة والقواعد، بتزيد من قدرة الهيكل على مقاومة الأحمال الجانبية مثل الزلازل والرياح، وبتضمن سلامة ومتانة البناء. بدونها، الهياكل بتكون أضعف ومعرضة للتشقق والانهيار.

لهيك، الاهتمام بتصميم واستمرار كانات الأعمدة داخل القواعد مش بس خطوة هندسية، بل هي خطوة لضمان سلامة واستقرار المباني. 🏗️💪

#هندسة_مدنية
#CivilEngineering #CivilEngineer
https://t.me/construction2018/54164
*كيف يدفع بناء الطرق السريعة عجلة التنمية المستدامة*

الطرق السريعة ليست مجرد طرق - إنها شريان حيوي يدفع النمو، ويقلل الفقر، ويمكن أن تكون مستدامة بيئياً! إليكم كيف يدعم بناء الطرق السريعة التنمية المستدامة، مع بعض الحسابات الواقعية للتوضيح.

1️⃣ تقليل وقت السفر واستهلاك الوقود

تؤدي الطرق السريعة الفعالة إلى تقليل وقت السفر واستهلاك الوقود والانبعاثات. على سبيل المثال، إذا قصر طريق سريع جديد رحلة 50 كم بنسبة 20٪، لتصبح 40 كم، دعونا نحسب توفير الوقود والانبعاثات:

توفير الوقود: بافتراض أن السيارة تستهلك 0.1 لتر/كم، لـ 1000 سيارة يومياً:

الوقود الموفر يومياً = (50 - 40) × 0.1 × 1000 = 100 لتر/يوم

يترجم هذا التوفير في الوقود مباشرة إلى خفض الانبعاثات وتوفير التكاليف للمستخدمين، مما يؤثر إيجاباً على البيئة والاقتصاد.

2️⃣ خلق فرص العمل والنمو الاقتصادي المحلي

تولد مشاريع البناء آلاف الوظائف المباشرة وغير المباشرة. على سبيل المثال، يمكن لبناء طريق سريع بطول 10 كم أن يخلق حتى 500 وظيفة، من العمالة الماهرة إلى الموردين المحليين. من خلال تعزيز نمو الوظائف، تحفز مشاريع الطرق السريعة الاقتصاد وتحسن مستوى المعيشة في المجتمعات المجاورة.

3️⃣ تعزيز السلامة المرورية وتقليل الحوادث

مع الطرق السريعة المصممة جيداً، تنخفض احتمالية وقوع الحوادث. بافتراض أن طريقاً سريعاً جديداً بميزات أمان أفضل يقلل معدلات الحوادث بنسبة 15٪ على طريق كان خطراً سابقاً:

الأرواح المنقذة: إذا كان هناك 100 حادث سنوياً، فإن تخفيضاً بنسبة 15٪ يعني:

100 × 0.15 = 15 حادثاً أقل

يؤدي انخفاض الحوادث إلى مجتمعات أكثر أماناً، وتكاليف رعاية صحية أقل، وجودة حياة أعلى.

4️⃣ تعزيز المواد والتقنيات المستدامة

تتضمن مشاريع الطرق السريعة بشكل متزايد مواد معاد تدويرها، مثل الأسفلت المستصلح ونفايات البناء، مما يقلل الطلب على المواد الخام الجديدة ويقلل استخدام مدافن النفايات. يمكن لاستخدام 30٪ من الأسفلت المستصلح في مقطع طريق سريع بطول 1 كم أن يوفر حوالي 300 طن من المواد الخام. تخيل إذا تم تطبيق هذه الممارسة على مستوى البلاد!

5️⃣ دعم المركبات الكهربائية والهجينة

تم تصميم الطرق السريعة الحديثة مع بنية تحتية للمركبات الكهربائية. يعني تركيب محطات شحن كهربائية كل 50 كم على طريق سريع بطول 500 كم وجود 10 محطات، كل منها تقلل انبعاثات غازات الاحتباس الحراري بحوالي طنين سنوياً مع تحول المزيد من السائقين إلى المركبات الكهربائية.



#التنمية_المستدامة #بناء_الطرق_السريعة #هندسة_المستقبل #البنية_التحتية_الخضراء #البناء_الصديق_للبيئة #الهندسة_المدنية