Media is too big
VIEW IN TELEGRAM
Data Analytics with python.
Starting date:- 10th oct 2024
Starting date:- 10th oct 2024
๐4โค1
Here are 25 most common Deep Learning interview questions for ML research positions:
Fundamentals:
- What is deep learning, and how does it differ from traditional machine learning?
- What is an activation function, and why is it important? Explain three types of activation functions.
- You are using a deep neural network for prediction, but it overfits the training data. What can you do to reduce overfitting?
- What is the vanishing gradient problem in neural networks, and how can it be fixed?
- Explain the process of backpropagation.
Neural Network Architectures:
- Describe the architecture of a typical Convolutional Neural Network (CNN).
- What are Autoencoders, and what are three practical uses of them?
- What is a transformer architecture, and how is it used in NLP tasks?
- What is the role of pooling layers in CNNs?
- What are Recurrent Neural Networks (RNNs), and where are they used?
Training and Optimization:
- How does L1/L2 regularization affect a neural network?
- Why should we use Batch Normalization?
- How do you know if your model is suffering from exploding gradients?
- What is the purpose of dropout in neural networks, and how does it affect training?
- What are some hyperparameters used in training neural networks?
Advanced Topics:
- What are the main gates in LSTM networks, and what are their tasks?
- Explain how self-attention works in transformers.
- Can CNNs be used to classify 1D signals?
- What is transfer learning, and when is it recommended or not?
- How do depthwise separable convolutions improve CNNs?
Practical Implementation:
- Describe the process of pre-training and fine-tuning in transformers.
- What are the main challenges when training a deep learning model with limited data?
- How do you handle class imbalance in deep learning?
- What are the challenges of deploying deep learning models in production?
- How would you modify a pre-trained model from classification to regression?
Like โค๏ธ for more post ๐ฃ.
Fundamentals:
- What is deep learning, and how does it differ from traditional machine learning?
- What is an activation function, and why is it important? Explain three types of activation functions.
- You are using a deep neural network for prediction, but it overfits the training data. What can you do to reduce overfitting?
- What is the vanishing gradient problem in neural networks, and how can it be fixed?
- Explain the process of backpropagation.
Neural Network Architectures:
- Describe the architecture of a typical Convolutional Neural Network (CNN).
- What are Autoencoders, and what are three practical uses of them?
- What is a transformer architecture, and how is it used in NLP tasks?
- What is the role of pooling layers in CNNs?
- What are Recurrent Neural Networks (RNNs), and where are they used?
Training and Optimization:
- How does L1/L2 regularization affect a neural network?
- Why should we use Batch Normalization?
- How do you know if your model is suffering from exploding gradients?
- What is the purpose of dropout in neural networks, and how does it affect training?
- What are some hyperparameters used in training neural networks?
Advanced Topics:
- What are the main gates in LSTM networks, and what are their tasks?
- Explain how self-attention works in transformers.
- Can CNNs be used to classify 1D signals?
- What is transfer learning, and when is it recommended or not?
- How do depthwise separable convolutions improve CNNs?
Practical Implementation:
- Describe the process of pre-training and fine-tuning in transformers.
- What are the main challenges when training a deep learning model with limited data?
- How do you handle class imbalance in deep learning?
- What are the challenges of deploying deep learning models in production?
- How would you modify a pre-trained model from classification to regression?
Like โค๏ธ for more post ๐ฃ.
๐8โค3
Top 10 important data science concepts
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Like if you need similar content ๐๐
Hope this helps you ๐
1. Data Cleaning: Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in a dataset. It is a crucial step in the data science pipeline as it ensures the quality and reliability of the data.
2. Exploratory Data Analysis (EDA): EDA is the process of analyzing and visualizing data to gain insights and understand the underlying patterns and relationships. It involves techniques such as summary statistics, data visualization, and correlation analysis.
3. Feature Engineering: Feature engineering is the process of creating new features or transforming existing features in a dataset to improve the performance of machine learning models. It involves techniques such as encoding categorical variables, scaling numerical variables, and creating interaction terms.
4. Machine Learning Algorithms: Machine learning algorithms are mathematical models that learn patterns and relationships from data to make predictions or decisions. Some important machine learning algorithms include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
5. Model Evaluation and Validation: Model evaluation and validation involve assessing the performance of machine learning models on unseen data. It includes techniques such as cross-validation, confusion matrix, precision, recall, F1 score, and ROC curve analysis.
6. Feature Selection: Feature selection is the process of selecting the most relevant features from a dataset to improve model performance and reduce overfitting. It involves techniques such as correlation analysis, backward elimination, forward selection, and regularization methods.
7. Dimensionality Reduction: Dimensionality reduction techniques are used to reduce the number of features in a dataset while preserving the most important information. Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding) are common dimensionality reduction techniques.
8. Model Optimization: Model optimization involves fine-tuning the parameters and hyperparameters of machine learning models to achieve the best performance. Techniques such as grid search, random search, and Bayesian optimization are used for model optimization.
9. Data Visualization: Data visualization is the graphical representation of data to communicate insights and patterns effectively. It involves using charts, graphs, and plots to present data in a visually appealing and understandable manner.
10. Big Data Analytics: Big data analytics refers to the process of analyzing large and complex datasets that cannot be processed using traditional data processing techniques. It involves technologies such as Hadoop, Spark, and distributed computing to extract insights from massive amounts of data.
Like if you need similar content ๐๐
Hope this helps you ๐
โค4๐3๐2
Data science interview questions ๐
๐ฆ๐ค๐
- How do you write a query to fetch the top 5 highest salaries in each department?
- Whatโs the difference between the HAVING and WHERE clauses in SQL?
- How do you handle NULL values in SQL, and how do they affect aggregate functions?
๐ฃ๐๐๐ต๐ผ๐ป
- How do you handle large datasets in Python, and which libraries would you use for performance?
- What are context managers in Python, and how do they help with resource management?
- How do you manage and log errors in Python-based ETL pipelines?
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
- Explain the difference between bias and variance in a machine learning model. How do you balance them?
- What is cross-validation, and how does it improve the performance of machine learning models?
- How do you deal with class imbalance in classification tasks, and what techniques would you apply?
๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
- What is the vanishing gradient problem in deep learning, and how can it be mitigated?
- Explain how a convolutional neural network (CNN) works and when you would use it.
- What is dropout in neural networks, and how does it help prevent overfitting?
๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด
- How would you handle outliers in a dataset, and when is it appropriate to remove or keep them?
- Explain how to merge two datasets in Python, and how would you handle duplicate or missing entries in the merged data?
- What is data normalization, and when should you apply it to your dataset?
๐๐ฎ๐๐ฎ ๐ฉ๐ถ๐๐๐ฎ๐น๐ถ๐๐ฎ๐๐ถ๐ผ๐ป - ๐ง๐ฎ๐ฏ๐น๐ฒ๐ฎ๐
- How do you create a dual-axis chart in Tableau, and when would you use it?
- How would you filter data in Tableau to create a dynamic dashboard that updates based on user input?
- What are calculated fields in Tableau, and how would you use them to create a custom metric?
#datascience #interview
๐ฆ๐ค๐
- How do you write a query to fetch the top 5 highest salaries in each department?
- Whatโs the difference between the HAVING and WHERE clauses in SQL?
- How do you handle NULL values in SQL, and how do they affect aggregate functions?
๐ฃ๐๐๐ต๐ผ๐ป
- How do you handle large datasets in Python, and which libraries would you use for performance?
- What are context managers in Python, and how do they help with resource management?
- How do you manage and log errors in Python-based ETL pipelines?
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
- Explain the difference between bias and variance in a machine learning model. How do you balance them?
- What is cross-validation, and how does it improve the performance of machine learning models?
- How do you deal with class imbalance in classification tasks, and what techniques would you apply?
๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
- What is the vanishing gradient problem in deep learning, and how can it be mitigated?
- Explain how a convolutional neural network (CNN) works and when you would use it.
- What is dropout in neural networks, and how does it help prevent overfitting?
๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด
- How would you handle outliers in a dataset, and when is it appropriate to remove or keep them?
- Explain how to merge two datasets in Python, and how would you handle duplicate or missing entries in the merged data?
- What is data normalization, and when should you apply it to your dataset?
๐๐ฎ๐๐ฎ ๐ฉ๐ถ๐๐๐ฎ๐น๐ถ๐๐ฎ๐๐ถ๐ผ๐ป - ๐ง๐ฎ๐ฏ๐น๐ฒ๐ฎ๐
- How do you create a dual-axis chart in Tableau, and when would you use it?
- How would you filter data in Tableau to create a dynamic dashboard that updates based on user input?
- What are calculated fields in Tableau, and how would you use them to create a custom metric?
#datascience #interview
Genpact is hiring!
Position: Business Analyst/ Data Analyst!
Qualification: Bachelorโs/ Masterโs Degree
Salary: 5.9 - 8.6 LPA (Expected)
Experienc๏ปฟe: Freshers/ Experienced
Location: Bangalore/ Hyderabad/ Gurugram
๐Apply Now: https://genpact.taleo.net/careersection/sgy_external_career_section/jobdetail.ftl?job=COR029438
All the best ๐๐
Position: Business Analyst/ Data Analyst!
Qualification: Bachelorโs/ Masterโs Degree
Salary: 5.9 - 8.6 LPA (Expected)
Experienc๏ปฟe: Freshers/ Experienced
Location: Bangalore/ Hyderabad/ Gurugram
๐Apply Now: https://genpact.taleo.net/careersection/sgy_external_career_section/jobdetail.ftl?job=COR029438
All the best ๐๐
๐1
How to Become a Data Analyst from Scratch! ๐
Whether you're starting fresh or upskilling, here's your roadmap:
โ Master Excel and SQL - solve SQL problems from leetcode & hackerank
โ Get the hang of either Power BI or Tableau - do some hands-on projects
โ learn what the heck ATS is and how to get around it
โ learn to be ready for any interview question
โ Build projects for a data portfolio
โ And you don't need to do it all at once!
โ Fail and learn to pick yourself up whenever required
Whether it's acing interviews or building an impressive portfolio, give yourself the space to learn, fail, and grow. Good things take time โ
Like if it helps โค๏ธ
I have curated best top-notch Data Analytics Resources ๐๐
https://topmate.io/codingdidi
Hope it helps :)
Whether you're starting fresh or upskilling, here's your roadmap:
โ Master Excel and SQL - solve SQL problems from leetcode & hackerank
โ Get the hang of either Power BI or Tableau - do some hands-on projects
โ learn what the heck ATS is and how to get around it
โ learn to be ready for any interview question
โ Build projects for a data portfolio
โ And you don't need to do it all at once!
โ Fail and learn to pick yourself up whenever required
Whether it's acing interviews or building an impressive portfolio, give yourself the space to learn, fail, and grow. Good things take time โ
Like if it helps โค๏ธ
I have curated best top-notch Data Analytics Resources ๐๐
https://topmate.io/codingdidi
Hope it helps :)
topmate.io
Codingdidi
Content Creator
Resume key words for data scientist role explained in points:
1. Data Analysis:
- Proficient in extracting, cleaning, and analyzing data to derive insights.
- Skilled in using statistical methods and machine learning algorithms for data analysis.
- Experience with tools such as Python, R, or SQL for data manipulation and analysis.
2. Machine Learning:
- Strong understanding of machine learning techniques such as regression, classification, clustering, and neural networks.
- Experience in model development, evaluation, and deployment.
- Familiarity with libraries like TensorFlow, scikit-learn, or PyTorch for implementing machine learning models.
3. Data Visualization:
- Ability to present complex data in a clear and understandable manner through visualizations.
- Proficiency in tools like Matplotlib, Seaborn, or Tableau for creating insightful graphs and charts.
- Understanding of best practices in data visualization for effective communication of findings.
4. Big Data:
- Experience working with large datasets using technologies like Hadoop, Spark, or Apache Flink.
- Knowledge of distributed computing principles and tools for processing and analyzing big data.
- Ability to optimize algorithms and processes for scalability and performance.
5. Problem-Solving:
- Strong analytical and problem-solving skills to tackle complex data-related challenges.
- Ability to formulate hypotheses, design experiments, and iterate on solutions.
- Aptitude for identifying opportunities for leveraging data to drive business outcomes and decision-making.
Resume key words for a data analyst role
1. SQL (Structured Query Language):
- SQL is a programming language used for managing and querying relational databases.
- Data analysts often use SQL to extract, manipulate, and analyze data stored in databases, making it a fundamental skill for the role.
2. Python/R:
- Python and R are popular programming languages used for data analysis and statistical computing.
- Proficiency in Python or R allows data analysts to perform various tasks such as data cleaning, modeling, visualization, and machine learning.
3. Data Visualization:
- Data visualization involves presenting data in graphical or visual formats to communicate insights effectively.
- Data analysts use tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn to create visualizations that help stakeholders understand complex data patterns and trends.
4. Statistical Analysis:
- Statistical analysis involves applying statistical methods to analyze and interpret data.
- Data analysts use statistical techniques to uncover relationships, trends, and patterns in data, providing valuable insights for decision-making.
5. Data-driven Decision Making:
- Data-driven decision making is the process of making decisions based on data analysis and evidence rather than intuition or gut feelings.
- Data analysts play a crucial role in helping organizations make informed decisions by analyzing data and providing actionable insights that drive business strategies and operations.
Data Science Interview Resources
๐๐
https://topmate.io/codingdidi
Like for more ๐
1. Data Analysis:
- Proficient in extracting, cleaning, and analyzing data to derive insights.
- Skilled in using statistical methods and machine learning algorithms for data analysis.
- Experience with tools such as Python, R, or SQL for data manipulation and analysis.
2. Machine Learning:
- Strong understanding of machine learning techniques such as regression, classification, clustering, and neural networks.
- Experience in model development, evaluation, and deployment.
- Familiarity with libraries like TensorFlow, scikit-learn, or PyTorch for implementing machine learning models.
3. Data Visualization:
- Ability to present complex data in a clear and understandable manner through visualizations.
- Proficiency in tools like Matplotlib, Seaborn, or Tableau for creating insightful graphs and charts.
- Understanding of best practices in data visualization for effective communication of findings.
4. Big Data:
- Experience working with large datasets using technologies like Hadoop, Spark, or Apache Flink.
- Knowledge of distributed computing principles and tools for processing and analyzing big data.
- Ability to optimize algorithms and processes for scalability and performance.
5. Problem-Solving:
- Strong analytical and problem-solving skills to tackle complex data-related challenges.
- Ability to formulate hypotheses, design experiments, and iterate on solutions.
- Aptitude for identifying opportunities for leveraging data to drive business outcomes and decision-making.
Resume key words for a data analyst role
1. SQL (Structured Query Language):
- SQL is a programming language used for managing and querying relational databases.
- Data analysts often use SQL to extract, manipulate, and analyze data stored in databases, making it a fundamental skill for the role.
2. Python/R:
- Python and R are popular programming languages used for data analysis and statistical computing.
- Proficiency in Python or R allows data analysts to perform various tasks such as data cleaning, modeling, visualization, and machine learning.
3. Data Visualization:
- Data visualization involves presenting data in graphical or visual formats to communicate insights effectively.
- Data analysts use tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn to create visualizations that help stakeholders understand complex data patterns and trends.
4. Statistical Analysis:
- Statistical analysis involves applying statistical methods to analyze and interpret data.
- Data analysts use statistical techniques to uncover relationships, trends, and patterns in data, providing valuable insights for decision-making.
5. Data-driven Decision Making:
- Data-driven decision making is the process of making decisions based on data analysis and evidence rather than intuition or gut feelings.
- Data analysts play a crucial role in helping organizations make informed decisions by analyzing data and providing actionable insights that drive business strategies and operations.
Data Science Interview Resources
๐๐
https://topmate.io/codingdidi
Like for more ๐
๐ฅ6๐4โค3๐1
Citi is hiring Analyst
Experienc๏ปฟe: Freshers
https://jobs.citi.com/job/-/-/287/68234635200
Like for more such updates โค๏ธ
Experienc๏ปฟe: Freshers
https://jobs.citi.com/job/-/-/287/68234635200
Like for more such updates โค๏ธ
โค1
โ
๐-๐๐ญ๐๐ฉ ๐๐จ๐๐๐ฆ๐๐ฉ ๐ญ๐จ ๐๐ฐ๐ข๐ญ๐๐ก ๐ข๐ง๐ญ๐จ ๐ญ๐ก๐ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ข๐๐ฅ๐โ
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐4โค1๐ฅ1
@Codingdidi pinned ยซNEW VIDEO UPLOADED I hope it helps!! https://youtu.be/-rY4i2lAOq0?si=GoDQMlV2f-MYslxqยป
https://youtu.be/CK5t_RCGon8?si=6Q3nGjjS8qF5WcA8
Let me know in the comments if you want more videos like this!! โค๏ธ๐
Let me know in the comments if you want more videos like this!! โค๏ธ๐
YouTube
Deloitte OFF Campus Hiring | FICO, Odoo Hiring freshers | Freshers | College Pass out | NOV 2024๐
Front end developer : https://cuvette.tech/app/public/job/67353c4422f4992ef6c17543?referralCode=7UJ0ZM
Software Testing internship: https://unstop.com/internships/software-testing-internship-aabasoft-1235572?utm_source=KN-Academy&utm_medium=Affiliates&utโฆ
Software Testing internship: https://unstop.com/internships/software-testing-internship-aabasoft-1235572?utm_source=KN-Academy&utm_medium=Affiliates&utโฆ
๐1
20 Must-Know Statistics Questions for Data Analyst and Business Analyst Role:
1๏ธโฃ What is the difference between descriptive and inferential statistics?
2๏ธโฃ Explain mean, median, and mode and when to use each.
3๏ธโฃ What is standard deviation, and why is it important?
4๏ธโฃ Define correlation vs. causation with examples.
5๏ธโฃ What is a p-value, and how do you interpret it?
6๏ธโฃ Explain the concept of confidence intervals.
7๏ธโฃ What are outliers, and how can you handle them?
8๏ธโฃ When would you use a t-test vs. a z-test?
9๏ธโฃ What is the Central Limit Theorem (CLT), and why is it important?
๐ Explain the difference between population and sample.
1๏ธโฃ1๏ธโฃ What is regression analysis, and what are its key assumptions?
1๏ธโฃ2๏ธโฃ How do you calculate probability, and why does it matter in analytics?
1๏ธโฃ3๏ธโฃ Explain the concept of Bayesโ Theorem with a practical example.
1๏ธโฃ4๏ธโฃ What is an ANOVA test, and when should it be used?
1๏ธโฃ5๏ธโฃ Define skewness and kurtosis in a dataset.
1๏ธโฃ6๏ธโฃ What is the difference between parametric and non-parametric tests?
1๏ธโฃ7๏ธโฃ What are Type I and Type II errors in hypothesis testing?
1๏ธโฃ8๏ธโฃ How do you handle missing data in a dataset?
1๏ธโฃ9๏ธโฃ What is A/B testing, and how do you analyze the results?
2๏ธโฃ0๏ธโฃ What is a Chi-square test, and when is it used?
1๏ธโฃ What is the difference between descriptive and inferential statistics?
2๏ธโฃ Explain mean, median, and mode and when to use each.
3๏ธโฃ What is standard deviation, and why is it important?
4๏ธโฃ Define correlation vs. causation with examples.
5๏ธโฃ What is a p-value, and how do you interpret it?
6๏ธโฃ Explain the concept of confidence intervals.
7๏ธโฃ What are outliers, and how can you handle them?
8๏ธโฃ When would you use a t-test vs. a z-test?
9๏ธโฃ What is the Central Limit Theorem (CLT), and why is it important?
๐ Explain the difference between population and sample.
1๏ธโฃ1๏ธโฃ What is regression analysis, and what are its key assumptions?
1๏ธโฃ2๏ธโฃ How do you calculate probability, and why does it matter in analytics?
1๏ธโฃ3๏ธโฃ Explain the concept of Bayesโ Theorem with a practical example.
1๏ธโฃ4๏ธโฃ What is an ANOVA test, and when should it be used?
1๏ธโฃ5๏ธโฃ Define skewness and kurtosis in a dataset.
1๏ธโฃ6๏ธโฃ What is the difference between parametric and non-parametric tests?
1๏ธโฃ7๏ธโฃ What are Type I and Type II errors in hypothesis testing?
1๏ธโฃ8๏ธโฃ How do you handle missing data in a dataset?
1๏ธโฃ9๏ธโฃ What is A/B testing, and how do you analyze the results?
2๏ธโฃ0๏ธโฃ What is a Chi-square test, and when is it used?
๐3
Morningstar is HIRING! Exciting Job Opportunities You Can't Miss!
https://youtu.be/xVlPDAxUOD0
https://youtu.be/xVlPDAxUOD0
YouTube
Morningstar is HIRING! Exciting Job Opportunities You Can't Miss!
Morning star hiring
https://careers.morningstar.com/us/en/job/REQ-036608/MDP-Associate
My content is exclusively focused on education, as I firmly believe in delivering value to my subscribers.
Connect with me on social media
๐Instagram https://โฆ
https://careers.morningstar.com/us/en/job/REQ-036608/MDP-Associate
My content is exclusively focused on education, as I firmly believe in delivering value to my subscribers.
Connect with me on social media
๐Instagram https://โฆ
๐1
Want to become a master of Python and SQL? Get a free 30-day session, with regular 40-minute sessions via Zoom. Just send 'I wanna join' on WhatsApp to +91-9910986344, and be prepared to shell out a platform fee of Rs. 100. Don't worry, you'll get additional notes and free materials on Python and SQL to make it worth your while.
๐๐ป Those who are serious about their career can ping me.
*This is just for first 100 participants.*
Sessions are starting tomorrow onwards.
Registrations are open up till midnight.
๐๐ป Those who are serious about their career can ping me.
*This is just for first 100 participants.*
Sessions are starting tomorrow onwards.
Registrations are open up till midnight.
๐3โค1๐ฅ1